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Abstract

Originating in the Tianshan Mountains in arid Central Asia, the natural discharge change of the Naryn River is strongly
affected by climate change. As the main source of water for the region, this river is crucial to both the natural environment
and the socio-economic development. To extend the discharge record and better understand past and future changes in Naryn
River discharge, we developed four tree-ring width chronologies and analyzed the relationship between tree growth and dis-
charge. The resulting reconstruction dates back to 1753 and has an R? of 0.374 (1939-2017). Interannual discharge variations
of the Naryn River indicate that 1917 was the driest year of the past 265 years, while 1956 was the wettest. The record also
indicates that the majority of extreme flood years occurred in the past century; prior to about 1900 C.E., the discharge of the
Naryn River was relatively stable. Since 1900 C.E., discharge volume has gradually increased, as has discharge variability.
At decadal time scales, the 2010s are notable for the frequency of major floods, whereas the 1910s were the driest. Between
the 1870s and the 1910s, the Naryn River experienced a period of low discharge that continued for nearly half a century. The
discharge of the Naryn River over the past 265 years appears to vary over quasi-periods of 60, 21, 11, and 2-4 years, which
are driven by large-scale climate systems.
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1 Introduction

Climate change poses a serious challenge to the survival
and development of humankind and is a major international
policy issue today (Campbell et al. 2011; Carter et al. 2015).
Global warming accelerates the water cycle (Douville et al.
) ) . 2002) and the expansion of drylands (Ma 2007; Huang et al.
Climate Change Research Center, Institute of Atmospheric 2016), and leads to an increasing risk of megadrought for
Physics, Chinese Academy of Sciences, Beijing 100029, ’
China many ecosystems (Ning et al. 2019; Zhang et al. 2019a).
Characterized by an arid continental climate (Kottek et al.
2006), Central Asia covers 5x 10° km? and has a popula-
tion of approximately 60 million people. Ecosystem stabil-
ity, agricultural production, and socioeconomic development
in this region are critically dependent on its scarce water
resources (Tangdamrongsub et al. 2011; Siegfried et al.
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2012).

The mountain system is an important water source in
arid regions (Viviroli et al. 2007; Immerzeel et al. 2010;
Immerzeel and Bierkens 2012). The Tianshan Moun-
tains are particularly key “water towers” in Central Asia
because they provide water to millions of people in this
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geopolitically important region and act as an ecological
barrier (Siegfried et al. 2012). Emerging from the Tian-
shan Mountains, the Naryn River flows into the Syr Darya,
which is the longest and one of the most important rivers
in Central Asia. The Central Asian republics depend on
the Syr Darya for drinking water, irrigation, and hydro-
electric power (Taltakov 2015). It is also one of the most
important sources of water for the Aral Sea, which is the
biggest lake in Central Asia. Formerly, the Aral Sea was
one of the four largest lakes in the world, but it has been
shrinking almost continuously since at least 1850. The
shrinkage of the Aral Sea has been called “one of the
planet’s worst environmental disasters”. If the loss of the
Aral Sea is to be curtailed, it is important to understand
natural versus human-induced changes in discharge. As
the source of the Syr Darya, it is vital to understand long-
term changes in the natural discharge of the Naryn River.
A better understanding of natural discharge in the past will
help researchers and water managers estimate future trends
in water availability and manage this limited resource for
both socioeconomic development and ecological integrity.

Instrumental records in Central Asia are typically short
and discontinuous, especially for the Naryn River. It is
therefore important to develop proxy records of hydro-
logic change. Tree rings can provide reliable records of
the long-term natural variability in discharge that extend
well beyond the instrumental record. Because they can be
precisely dated, offer annual resolution, and are compara-
ble with instrumental data, tree rings are considered good
proxies for the study of climate and hydrological changes.
They provide information over hundreds to thousands of
years and have been used in many different regions of the
world (e.g., Pederson et al. 2001, 2013; Davi et al. 2006,
2013; Akkemik et al. 2008; D’Arrigo et al. 2011; Margo-
lis et al. 2011; Meko and Woodhouse 2011; Leland et al.
2013; Cook et al. 2013; Shah et al. 2013, 2014; Harley
et al. 2017; Maxwell et al. 2017; Rao et al. 2018; Strange
et al. 2019). Long-term information regarding changes in
discharge and hydroclimate can be used in water resource
planning, and can play a key role in placing present-day
events and projected future conditions into a broader con-
text than that offered by instrumental observations alone.
Previous dendrochronological studies in arid Central Asia
have focused mainly on reconstructing climate change,
including temperature (Chen et al. 2012; Zhang et al.
2020), precipitation (Yuan et al. 2001, 2003; Solomina
et al. 2012, 2016; Zhang et al. 2016a), Standardised Pre-
cipitation-Evapotranspiration Index (SPEI) (Zhang et al.
2019a), and even the mass balance of glaciers (Zhang et al.
2019b). To date, however, few discharge reconstructions
have been developed for the Tianshan Mountains in China
(Yuan et al. 2007; Zhang et al. 2016b, c) and Kazakhstan
(Panyushkina et al. 2018).
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Here, we develop four new tree-ring width chronologies
for the Naryn River drainage basin in the inner Tianshan
Mountains. We find the best response relationship between
the tree-ring chronologies and discharge, develop a reliable
265-year natural May—August discharge reconstruction for
the Naryn River, analyse the temporal variations in water
discharge, and place recent discharge variations and trends
into the context of the past three centuries. Finally, we com-
pare the discharge record with global atmospheric circula-
tion indices to identify the major climatic factors forcing
river discharge.

2 Data and methods
2.1 Study areas, climate and discharge data

The Naryn River, which originates in the Tianshan Moun-
tains of Kyrgyzstan, is one of the main tributaries of the Syr
Darya River (Fig. 1). The Naryn River starts at the conflu-
ence of the Big and the Small Naryn Rivers, then flows into
Ferghana Valley, where it merges with the Karadarya River
to form the Syr Darya River (Hagg et al. 2013). It is 807 km
long (together with Chong-Naryn River) and has an annual
flow of 13.7 cubic kilometres. The basin covers 59,100 km?.
There are a number of hydroelectric power stations on the
Syr Darya and its tributaries. The Toktogul hydroelectric
power station, which was constructed on the Naryn River in
the 1970s and expanded in the 1980s, regulates the river’s
flow (Taltakov 2015). The existence of reservoirs along the
river’s length interferes with our understanding of natural
discharge variability. We therefore only use discharge data
from hydrological stations upstream of the Syr Darya (i.e.
along the Naryn River).

For this study, monthly discharge data were collected
from the Naryn (upstream), Ust. Kekirim (midstream),
and Toktogul reservoir (downstream) hydrological stations
(Fig. 1). The basic information for these three stations is
shown in Table 1. The discharge at the Naryn hydrologic
station is most representative of the natural discharge of the
Naryn River because the quantity of water flowing past this
station is least affected by human influence. For example,
there are fewer reservoirs and power station dams upstream
of the Naryn hydrologic station, and there are few agricul-
tural diversion and other human activities. This station also
has the longest observation record and the best data preser-
vation (Table 1). The locations and types of gauges at the
hydrological stations have not changed over the study period;
the discharge data are therefore expected to be homogenous.
Because some discharge data are missing, we used continu-
ous data for the period 1939-2017 for analysis.

Monthly climate data were obtained from the World
Meteorological Organization (WMO; http://www.wmo.


http://www.wmo.int/pages/index_en.html
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Table 1 I‘nforma.tlon about the Station Code Latitude Longitude Elevation Start End Years
hydrological stations along the
Naryn River Naryn NRY 41.43°N 76.02°E 2039 m 1933 2017 85
Ust. Kekirim UKE 41.42°N 73.98°E 1260 m 1934 1980 47
Toktogul reservoir TOK 41.66°N 72.64°E 1015 m 1951 1995 45

int/pages/index_en.html). We collected mean tempera-
ture (1886-2017) and precipitation (1891-2004) data for
the Naryn meteorological station (41.43° N, 76.00° E,
2041.0 m) because it is the station nearest the sampling site,
with a straight-line distance of only 10 km. Water vapor flux
data were derived from the data-sets of the NCEP/NCAR
Reanalysis Project (Ning et al. 2017) and were integrated
from the ground up to 300 hPa. The vapour pressure data
come from the high resolution global monthly grid data-set
of the Climate Research Unit (CRU TS 4.03) at the Univer-
sity of East Anglia, UK. The resolution of the data-set is

0.5°%0.5°, covering 9 terrestrial variables of global land.
The sea surface temperature (SST) data are derived from
the monthly version of the Hadley Centre Sea Ice and Sea
Surface Temperature data-set (https://www.metoffice.gov.uk/
hadobs/hadisst/).

2.2 Development of the tree-ring chronologies
Tree-ring samples were collected in 2013, 2016, and 2018

from the Naryn River Basin in the inner Tianshan Mountains
(Fig. 1, Table 2). Information about the sampling sites is
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Table 2 Basic information

. Site Code Latitude Longitude Elevation Tree/Core Reliable period
about the tree ring samples SSS>0.85
Doolon DOO 41.81°N 75.76°E 2800-2850 m 24/48 1790-2013
Bosogo BSG 41.23°N 76.45°E 2700-2850 m 29/57 1707-2017
Chychkan CCS 72.87°N 42.13°E 2363-2400 m 21/42 1811-2017
Naryn NLS 76.08°N 41.33°E 2800-2820 m 27/54 1753-2017

shown in Table 2. The nearest sampling site (NLS) is located
10 km SE of the city of Naryn, close to the Naryn meteoro-
logical and hydrologic stations. All sampling sites are char-
acterized by forests of pure Schrenk spruce (P. schrenkiana
Fisch. et Mey.), which are shallow rooted, shade-loving trees
that are widely distributed throughout the Tianshan Moun-
tains. Trees were sampled using standard dendroclimatologi-
cal techniques (Stokes and Smiley 1968). Location informa-
tion and basic chronology statistics are provided in Fig. 1
and Table 2. We only sampled trees with no visible signs of
injury or disease in order to minimize the influence of non-
climatic factors on tree growth. In general, two cores were
taken from each Schrenk spruce tree using 10-mm diameter
increment borers (Haglof, Sweden). In total, we sampled 201
cores from 101 trees (Table 2).

All tree-ring samples were air dried, glued onto slotted
mounting boards, and sanded to a high polish in preparation
for ring-width measurement according to standard dendro-
chronological procedures (Stokes and Smiley 1968). Cores
were first visually cross-dated with reference to prominent
pointer or marker years. After a rigorous visual cross-dating
of the tree-ring cores, ring widths were measured to an accu-
racy of 0.001 mm with the Lintab 6 measuring instrument
and TSAP-Win program (Frank Rinntech, Heidelberg, Ger-
many). The quality control of cross-dating was carried out
using COFECHA (Holmes 1983). Cores with any ambigui-
ties were excluded from further analyses.

We established the tree-ring width chronologies using the
ARSTAN program (Cook 1985; Cook and Krusic 2011).
The ARSTAN standardization process removes non-cli-
matic variability in each tree-ring series and averages the
detrended ring-widths of all series from a site to reduce the
noise caused by individual trees (Fritts 1976). We then used
the spline function method to detrend the growth tendency
of the trees, using a step length that was 2/3 of the com-
mon interval (the window length of the spline function is
80-120 years). Following this method, we obtained three
types of chronologies: standard (STD), residual (RES), and
ARSTAN (ARS). To retain the low-frequency variability
within the tree-ring data, we used standard chronologies for
all analyses. Chronology variance was stabilised with the
r-bar weighted method and the expressed population signal
(EPS) was used to determine a common period for the indi-
vidual chronologies in the program ARSTAN (Cook and
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Krusic 2011). We also used subsample signal strength (SSS)
to assess the adequacy of replication in the early years of
the chronology, and thus, the reliability of the reconstructed
environmental signals (Wigley et al. 1984). To use the maxi-
mum length of the tree-ring chronologies and to ensure the
reliability of the reconstructions, we restricted our analysis
to the period with an SSS of at least 0.85.

2.3 Methods

To reconstruct discharge and validate the reconstruction,
we followed standard dendrochronology procedures (Fritts
1976). The relationship between discharge and tree-ring
width was analyzed using Pearson correlation analysis and
the Statistical Product and Service Solutions (SPSS) pro-
gram. All statistical procedures were evaluated at p<0.05
or p<0.01 levels of significance. Annual discharge mod-
eling was conducted using the transfer function approach
(Fritts 1976; Cook and Kairiukstis 1990). We used linear
regression to estimate the dependent discharge variable from
a set of potential tree-ring predictors (Fritts 1976). Once
the regression model was fully evaluated, the model was
applied to the full period of tree-ring data to generate the
reconstruction. The calibration model was evaluated based
on the variance in the instrumental record explained by the
model after adjusting for the loss of degrees of freedom (R?
cal). The leave-one-out cross-validation method (Michaelsen
1987) was used to verify the reliability and stability of the
discharge reconstruction. The testing statistics used includ-
ing the reduction of error (RE), the sign test and Pearson’s
correlation coefficient (Cook and Kairiukstis 1990). The
multi-taper method (MTM) of spectral analysis (Mann and
Lees 1996) and the Morlet wavelet were used to investigate
the periodicity of the discharge reconstruction (Torrence and
Compo 1998).

3 Results

3.1 Climatic and hydrological changes in the Naryn
River Basin from observational data

The Naryn River Basin is characterized by a continen-
tal climate with hot summers and cold winters. The mean
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annual temperature is 3.15 °C, with an average maximum
of 17.36 °C in July and an average minimum of — 16 °C
in January (Fig. 2a). Annual total precipitation is 284 mm
at the Naryn meteorological station, and ranges between
280 mm and 450 mm throughout the basin depending on
elevation (Kriegel et al. 2013). The majority of precipitation
falls in spring and early summer (May—July) (Fig. 2a). Mean
temperature and precipitation have slowly increased since
the beginning of the observational record (0.1 °C/10a and
4.6 mm/a, respectively), exhibiting a weak warming-wetting
trend (Fig. 2b).

This warming-wetting trend is similar to those observed
in other regions of the Tianshan Mountains and arid Central
Asia. Chen et al. (2011), for example, showed that annual
precipitation in Central Asia has increased significantly over
the past 80 years. The climate in Xinjiang, located to the east
of the study area, has changed from a warm-dry regime to a
warm-wet one since the middle 1980s. The average annual
precipitation from 1987 to 2000 was 22% higher than that
of the previous 15 years, increasing by 36 mm in northern
Xinjiang (Shi et al. 2007).

The average annual discharge (1933-2017) at the Naryn
hydrologic station is 93.3 m?/s. In the summer, discharge
can reach 219.8 m>/s, whereas it averages a mere 26.9 m>/s
in winter. Maximum discharge occurs in July (243.1 m%/s)
when the snow in the mountains melts and contributes
to river flow (Fig. 2¢). Snow melt contributes a remark-
able portion of discharge. Glacier melt also contributes to

discharge in the summer (Kriegel et al. 2013). As a result
of the warming and wetting process, the discharge of the
Naryn River has increased significantly (Fig. 2d).

3.2 Relationship between discharge and tree-ring
width

We compared the discharge data for the upper (Naryn,
NRY), middle (Ust. Kekirim, UKE), and lower (Toktogul
reservoir, TOK) reaches of the Naryn River with all of the
tree-ring chronologies. Correlation and response analysis
revealed significant positive correlations between the tree-
ring chronologies and discharge variability in May, June,
July, and August at a 95% confidence level (Table 3). The
correlation coefficient between the NLS chronology and
the Naryn hydrologic station discharge exceeded the 99%
significance level in May, June, July, and August, respec-
tively. Further analysis showed a correlation of 0.612
between the NLS chronology and May—August discharge
(p<0.0001, n=79; Fig. 3). In addition, the discharge
changes recorded at the three hydrological stations are
consistent with one another. The correlation coefficients
of the annual discharge between the Naryn hydrological
station and two lower stations (Ust. Kekirim and Toktogul
reservoir) exceed 0.7. Therefore, the discharge data of the
Naryn hydrological station can be used to represent dis-
charge changes across the Naryn River Basin.
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Table 3 The correlation analysis between the tree-ring chronologies
and discharge at the three hydrologic stations
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NRY, TOK and UKE represent the discharge at the Naryn, Tok-
togul reservoir, and Ust. Kekirim hydrological stations, respectively.
pl0—p12 represents October-December of the previous year, c1-c9
represents January- September of the current year, p10c9 represents
previous October—current September, c6¢8 and c5c8 represent June—
August and May—August of the current year, respectively

A black dot indicates significance at 99%; a white dot indicates sig-
nificance at 95%
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Fig.3 Correlation coefficient between the observed discharge and the
NLS tree-ring chronology. p10—p12 represents October—December of
the previous year, c1-c9 represents January -September of the current
year, p10c9 represents previous October—current September, and c6¢c8
and c5c8 represent June—August and May—August of the current year,
respectively

3.3 Discharge reconstruction and validation

Based on the strong correlation between the tree-ring chro-
nologies and the observed May—August discharge, the dis-
charge from May to August was reconstructed for the last
two centuries. A transfer function was developed:

Qs ¢ = 44.5 +151.9 x NLS(R*> = 0.374, n = 79,
p < 0.0001,F, 5, = 46.1, DW = 1.327) )

where Qs_g is the mean discharge from May to August, NLS
is the standardized width chronology of the NLS sampling
site. DW represents the Durbin-Watson value (Durbin and
Watson 1951). During the calibration period (1939-2017),
the reconstruction tracks the instrumental record very well,
with an explained variance of 37.4% (36.6% after adjust-
ing for the loss of degrees of freedom; Fig. 4a). The recon-
structed series reveals the discharge variability of the Naryn
River over the past 265 years (Fig. 4c).

The model passed all calibrations. The cross-valida-
tion test yielded a positive RE (0.345), which indicates
the predictive skill of the regression model. The statisti-
cally significant sign test (51 +, 28 —, p<0. 05) and cor-
relation (r=0.588, p<0.0001), and the first difference
sign test (56+, 22 —, p<0.01) and correlation (r=0.672,
p<0.0001) between the recorded data and the leave-one-
out-derived estimates, respectively, also indicate the valid-
ity of the reconstruction. In addition, the first-order dif-
ferential shows a high correlation (r=0.689, p<0.0001,
n=78, Pearson) between the reconstructed and observed
time series (Fig. 4b). The reliability of the reconstruction
is further validated by the consistency of high-frequency
change in the reconstructed and observed time series.
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Table 4 Ranking of the extreme drought and flood years over the past
265 years

Rank Extreme drought Extreme floods
Year Discharge (m/s) Year Discharge (m>/s)
1 1917 109.7 1956 256.2
2 1895 131.2 2017 252.0
3 1775 131.5 1804 242.7
4 1961 133.5 1973 241.3
5 1754 140.2 1950 240.0
6 1872 142.2 1999 239.4
7 1796 145.0 1952 239.2
8 1957 147.8 1769 236.2
9 1938 149.6 1966 234.7
10 1972 151.6 1925 233.0

3.4 Long-term discharge changes of the Naryn
River

Interannual variations indicate that 1917 was the driest
of the past 265 years, whereas 1956 was the wettest. Dis-
charge was relatively stable during the 1800s, but both
discharge volume and variability of the Naryn River have
increased over the last century. Most of the extreme flood
years have occurred since 1900 C.E. (Table 4). However,
1917 was a year of extreme drought that has been widely
observed in tree-ring reconstructions (Yuan et al. 2001,
2003; Zhang et al. 2016d, 2019c) and is observed in this
study as well for other rivers in the Tianshan Mountains

1850 1900 1950 2000

Year
2104 ——Mean —@—Decade discharge /
200+
-\Y/'\-/'\ —\ A /\ A

°
S

VAR VAR

T T T T T T T T T T T T
1760 1780 1800 1820 1840 1860 1880 1900 1920 1940 1960 1980 2000

Decade

%
S
n

Discharge (m‘/s)

Fig.5 The interdecadal variation of the Naryn River discharge recon-
struction over the past 265 years

(Yuan et al. 2007; Zhang et al. 2016b, c). Many historical
documents confirm that 1917 was a particularly dry year
throughout the Tianshan Mountains (Shi et al. 2007). As
is the case for other rivers in the Tianshan Mountains, the
discharge of the Naryn River has increased rapidly over
the past half century (Fig. 2d). This is likely related to
the current warming and wetting process, which leads to
increased glacial melt (Kriegel et al. 2013). The combined
increase in precipitation and glacial melt has led to the
increased discharge of the Naryn River.

At decadal time scales, the 2010s are notable because
significant flooding occurred during this period, whereas
the 1910s were one of the driest decades. From the 1870s
to the 1910s, the Naryn River experienced a period of low
water that continued for nearly half a century. The other
two periods of continuous low water are the 1960—1980s
and the 1810-1830s. The periods of continuous flooding
are the 1780-1800s and the 1840-1860s (Fig. 5). We com-
pared long-term changes in discharge between the Naryn
and other rivers in the Tianshan Mountains, namely Manasi
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Fig.6 A comparison of the Naryn River discharge reconstruction
with that of the Tuoshigan River (Zhang et al. 2016a), the Aksu River
(Zhang et al. 2016c) and the Manasi River (Yuan et al. 2007) in the
Tianshan Mountains. a Comparison of the four 20-years low-pass fil-
tering of reconstructions; b comparison of the four reconstructions

River (Yuan et al. 2007), Aksu River (Zhang et al. 2016¢),
and Tuoshigan River (Zhang et al. 2016a). The results show
that the discharge changes of the Naryn River are consistent
with those of other rivers, regardless of long-term changes in
frequency (Fig. 6). This consistency confirms the reliability
of the reconstruction.

Fig. 7 The relationship between
tree growth, climate, and dis-
charge in the Naryn River Basin
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4 Discussion

4.1 Relationship between discharge, radial growth,
and climate

The Tianshan Mountains are considered to be the “water
tower” of Central Asia, providing water to millions of peo-
ple. These mountains are mainly affected by the westerlies,
which collide with the northern slopes of the mountains and
produce the rain and snowfall on which the region depends.
As shown in Fig. 7, the more precipitation in spring directly
leads to the increase of Naryn river discharge. Meanwhile,
the rise in temperature effectively replenishes the river dis-
charge. The increase in discharge is driven by melting snow
and ice in the upper reaches of the Naryn River, as well as by
the increase in precipitation from May to August (Fig. 2a).
Climate change is therefore a decisive factor in the changes
in May—August discharge (Fig. 7). Meanwhile, Schrenk
spruce experiences the most radial growth from May to
August, and is the more sensitive to climate change during
this period. Zhang et al. (2016d) analyzed intra-annual radial
growth using data from continuously monitored dendrom-
eters in the Tianshan Mountains and found that the critical
growing season for Schrenk spruce is from late May to late
July, and that the rapid growth stage is from mid-June to
early July.

The total annual and May to August precipitation of the
study area is only 284 mm and 189 mm, respectively. This
minor amount of precipitation is not enough for the normal
growth of Schrenk spruce, which likes a humid environ-
ment. The mean annual temperature is 3.15 °C and the mean
temperature in May—August is 15.21 °C. The elevation of
the Naryn meteorological station is 2039 m a.s.l., and the
elevation of the NLS sampling site is as high as 2800 m a.s.1.

Precipitation
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An increase in temperature facilitates rapid cell division and
enlargement, leading to the formation of a wide annual ring.
Walter (1997) suggested that the optimum temperature range
for the net photosynthesis of evergreen coniferous trees is
between 10 and 25 °C. Using the dry adiabatic lapse rate,
we estimate the mean temperature at the sampling site in
May—August to be about 10.26 °C, which is at the low end
of the range. The continuous warming and wetting that has
been observed since the 1980s is therefore conducive to the
formation of early wood. In contrast, low temperatures or
less precipitation in May—August will slow cell division or
even result in stagnation. Many previous studies have shown
that spring drought has a notable impact on the radial growth
of Schrenk spruce. Hence, both discharge and tree growth
is controlled by climate (temperature and precipitation) and
therefore share an indirect but robust relationship (Fig. 8).
Thus, tree rings can be used to reconstruct a reliable dis-
charge record for Naryn River.

4.2 Possible climate drivers of discharge changes

Further correlation analysis shows that there is a significant
positive correlation (r=0.409, p<0.01, n=54) between
May and August discharge at the Naryn hydrologic station
and precipitation at the Naryn meteorological station. This
indicates that precipitation plays an important role in dis-
charge changes. In order to understand possible climatic
drivers of discharge change, we analyzed the water vapor
flux from May to August across mid-latitude Eurasia, and
compared the correlation between change in discharge and
large-scale water vapor pressure, and sea surface tempera-
tures (HadISST1). Our results indicate that the water vapor
of the Naryn River Basin originates mainly from the Atlantic
Ocean and is transmitted by westerly circulation (Fig. 9a).
Changes in the discharge of the Naryn River are significantly
related to the water vapor pressure across a wide swath of
Central Asia and Northwest China (Fig. 9b). Meanwhile, the
discharge has a significant positive correlation with North
Atlantic SSTs (Fig. 9¢). Guan et al. (2019) suggest that the
water vapor in Central Asia is derived from the Atlantic
Ocean in summer.
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Fig.8 21-year sliding correlation between tree-ring width and dis-
charge

A study by Aizen et al. (1997) showed that the main
factor determining changes in river discharge is the type
of precipitation (liquid or solid). The Tianshan Mountains
cast a significant rain shadow; as a result, the region to the
west of the mountains is largely dependent on moisture
carried by the westerlies. A later study by Aizen et al.
(2001) shows that annual and seasonal precipitation at
the mid-latitudes of Asia can be linked to major compo-
nents of mid-latitude atmospheric circulation. Burt and
Howden (2013) found that the hydroclimatology of rain-
fall and river flow in upland areas is closely coupled with
the strength of atmospheric circulation. Stronger westerly
winds could lead to abundant precipitation in the Tianshan
Mountains and hence to an increase in the discharge of
the Naryn River. This suggests that atmospheric circula-
tion might indirectly influence the discharge of the Naryn
River on both short- and long-term scales by affecting
precipitation.

Naryn River is an inland river, and its main water
sources are glacial meltwater and precipitation in the high
mountains. As a result, the impact of climate change on
discharge is particularly strong. Changes in discharge are
directly linked to changes in air temperature and precipita-
tion. Upward trends in both precipitation and temperature
accelerate the melting of snow/ice and are the direct cause
of the clear and rapid increase in discharge observed in
the 1980s (Fig. 2b). We suggest that the recent and rapid
increase in the discharge of the Naryn River is the result of
both global warming and changes in mid-latitude atmos-
pheric circulation.

A Morlet wavelet analysis shows that the changes in
the discharge of the Naryn River over the past 265 years
may occur over quasi-periods of 60 years, 21 years, and
11 years (Fig. 10). The multi-taper method (Thomson,
1982) also suggests quasi-periods of 21 and 11 years. At
the same time, the discharge of the Naryn River appears
to fluctuate over short-term quasi-periods of 2—4 years
(Fig. 10). Previous dendrohydrological studies of rivers
in the Tianshan Mountains have exhibited quasi-periods
of 2—4 years and 11 years (Liu et al. 2010; Gou et al. 2010;
Yuan et al. 2007; Zhang et al. 2016b, c¢). The quasi-period
of 2—4 years suggests that changes in the discharge of
the Naryn River may be related to westerly circulation.
Huang et al. (2013) suggested that the 2—4-year period is
linked to variations in the westerly circulation in the mid-
troposphere. Other studies have found that the 2—4-year
period is characteristic of climate change in Central Asia.
Because the Naryn River exhibits this quasi-period, it is
likely that its discharge is affected by large-scale climate
systems. The quasi-periods of 20 years and 11 years are
consistent with sunspot activity (Rind 2002), indicating
that discharge changes are also related to solar activity.
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Fig. 9 a Water vapor flux
from May to August dur-

ing the period 1981-2010. b
Spatial correlation between
the discharge reconstruction
for the Naryn River and the
May—August vapor pressure
(1981-2010). ¢ Spatial cor-
relation between the discharge
reconstruction and HadISST1
(1981-2010)
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Fig. 10 Cycle analysis for the reconstructed May—August discharge (1753-2017 C.E.). a Morlet wavelet analysis; b the variance of the Morlet
wavelet analysis. ¢ The Multi-Taper Power spectra. 99% SL and 95% SL represent significance levels at 99% and 95%, respectively

5 Conclusions

Our understanding of the full range of natural discharge
variability, including how modern flow compares to that
of the past, is poorly understood for the Aral Sea basin
(include Syr Darya) because the instrumental record is
quite short. To help address this limitation, we used tree-
rings and hydrological data from an undammed section
of the Naryn River to develop a hydrological series that
extends back to 1753 (265 years).

Instrumental observations in Central Asia are insuf-
ficient for understanding long-term climate and hydro-
logical changes. With their annual resolution and sensi-
tivity to climate, tree rings are reliable proxies that can
be used to extend the instrumental record. The tree ring
reconstruction provides a valuable source of information
about discharge changes in Naryn River, and confirms that

discharge patterns in recent decades are unusual compared
to the longer-term record.

The results of this study provide better understanding
of the relationship between climate, glaciers, discharge,
and ecological changes in the arid regions of Central Asia.
Furthermore, this study provides qualitative information
about the long-term hydrologic variability of the region
that should be useful to water managers, stakeholders, and
decisionmakers.
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