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While Arctic sea ice has been decreasing in recent decades that is largely due to anthropogenic forcing,
the extent of Antarctic sea ice showed a positive trend during 1979-2015, followed by an abrupt
decrease. The shortness of the satellite record limits our ability to quantify the possible contribution of
anthropogenic forcing and internal variability to the observed Antarctic sea ice variability. In this study,
ice core and fast ice records with annual resolution from six sites are used to reconstruct the annual-
resolved northernmost latitude of sea ice edge (NLSIE) for different sectors of the Southern Ocean, includ-

ﬁfﬁ;‘g‘ijcs; ing the Weddell Sea (WS), Bellingshausen Sea (BS), Amundsen Sea (AS), Ross Sea (RS), and the Indian and
Sea ice western Pacific Ocean (IndWPac). The linear trends of the NLSIE are analyzed for each sector for the past
Ice core 100-200 years and found to be —0.08°, —0.17°, +0.07°, +0.02°, and —0.03° per decade (>95% confidence

level) for the WS, BS, AS, RS, and IndWPac, respectively. For the entire Antarctic, our composite NLSIE
shows a decreasing trend (—0.03° per decade, 99% confidence level) during the 20th century, with a rapid
decline in the mid-1950s. It was not until the early 1980s that the observed increasing trend occurred. A
comparison with major climate indices shows that the long-term linear trends in all five sectors are lar-
gely dominated by the changes in the Southern Annular Mode (SAM). The multi-decadal variability in WS,
BS, and AS is dominated by the Interdecadal Pacific Oscillation, whereas that in the IndWPac and RS is

Southern Annular Mode
Interdecadal Pacific Oscillation

dominated by the SAM.

© 2021 Science China Press. Published by Elsevier B.V. and Science China Press. All rights reserved.

1. Introduction

Sea ice has important effects on local and regional climate vari-
ability through multiple processes. For example, sea ice modulates
the transfer of moisture and heat between oceans and the atmo-
sphere. Satellite observations have shown that sea ice in the Arctic
has been declining rapidly over the last 40 years, which is consis-
tent with the expectation of amplified Arctic warming due to ice-
albedo feedback [1,2]. In contrast, the total sea ice extent (SIE) in
the Antarctic showed a slight but significantly increasing trend
from 1979 to 2015, although this trend did not continue in recent
years (2016-2018), during which anomalously low ice cover was
observed [3]. At the regional scale, the SIE of the Ross Sea in winter,
summer, and autumn and that of the Weddell Sea in summer and
autumn have shown positive trends, whereas negative trends are
dominant in the western Weddell Sea in winter and in the Amund-
sen/Bellingshausen Seas in summer and autumn [3-5]. Coupled
climate models have had limited success in correctly simulating
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fundamental aspects of the observed annual cycle and the long-
term trends [3,6,7]. The discrepancy between climate models and
observations likely stems from climate forcing, rather than sea
ice physics [7,8].

Multiple factors contribute to the observed trends of Antarctic
SIE [9,10]. Several mechanisms have been proposed to explain
the weakly positive trend in the Antarctic SIE. Multi-decadal mod-
ulations of sea surface temperature (SST) in the tropical Pacific and
north Atlantic may strengthen the Amundsen Sea Low and cyclone
activities [11-15]. The freshened ocean surface, which reduces the
upwelling of warmer subsurface waters, might also increase
Antarctic sea ice cover [16-18]. The cooling of surface waters in
the Southern Ocean due to the observed strengthening of the west-
erly winds and upward trend in the Southern Annular Mode (SAM)
might be another factor resulting in the positive trend in Antarctic
SIE [19,20]. The rapid decrease that began in 2016 had been asso-
ciated with anomalous atmospheric conditions tele-connected
with the warming in the eastern Indian Ocean and a negative
SAM [21-25]. However, there is no consensus on the cause of the
observed changes.
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The satellite data record in the Antarctic is quite short; it begins
in the late 1970s, and the discrepancies between observations and
model simulations limit our understanding of Antarctic sea ice
variability and its links to regional climate over longer periods,
especially at the multi-decadal scale [10,26,27]. Climate model
simulations of future warming are heavily dependent on the his-
torical sea ice area data [28], and it is therefore critical to provide
reliable reconstructed paleo-sea ice data to ensure that the climate
models tasked with predicting future changes are fully optimized
[29].

Using paleoclimate archives is the best approach for recon-
structing the past sea ice state. Several studies have reconstructed
past changes in Antarctic sea ice using various proxy data extracted
from ice cores [30-36]. They have linked a number of chemical
species (e.g., methane sulphonic acid (MSA) [37,38], sea salt
sodium [36,39], and deuterium excess [40]) to the sea ice changes
around Antarctica. These studies have suggested that the winter
SIE in the western Pacific and Indian Ocean sectors has declined
since the 1950s [30,34]. In contrast, the winter SIE in the Ross
Sea has concurrently demonstrated an increasing trend, with the
largest increase observed after the early 1990s [35,40]. During
the 20th century, the sea ice in the Amundsen and Ross seas
expanded ~1° northward [35], while the Indian Ocean sector [34]
and the Bellingshausen Sea [32] experienced a significant sea ice
retreat [29,41]. When a longer time scale is considered, it is
observed that the Indian Ocean sector experienced sea ice retreat
during 1740-1770 and 1820-1840 [34]. Since the 1700s, a total
expansion of ~1.3° has been estimated for the sea ice in the
Amundsen and Ross seas [35]. Although these estimates of sea
ice changes are generally in agreement, the considerable uncer-
tainties arise from the individual proxies and different indicators
employed, and the aforementioned reconstructions and their uni-
fied quantization require further validation [10,42].

Reconstructions of sea ice around Antarctica from regional to
continental scales are essential to estimate the contribution of
internal and external forcings in Antarctic sea ice variability and
evaluate climate model simulations. To improve projections for
the coming decades, an understanding of the interactions of tele-
connections and local feedback mechanisms at longer time scales
is needed. In this study, we use ice-core-based reconstructions to
examine the regional and overall changes in Antarctic SIE during
the past 100-200 years. We also discuss the possible mechanisms
responsible for the identified variations in the context of climate
variability at the multi-decadal scale.

2. Material and methods
2.1. Ice core data

In this study, we used ice core and fast-ice records with annual
resolution from six sites to reconstruct the northernmost latitude
of sea ice edge (NLSIE) for the following sectors of the Southern
Ocean (Fig. 1). Preliminary identification of potential sectors was
performed based on previous studies and the correlation between
each proxy and the NLSIE for every 1° of longitude (Fig. S1 online).
By enlarging or reducing the potential areas and calculating the
correlations (Table S1 online) between the regional averaged NLSIE
and the proxies, we selected the most extensive and significant
(>95% confidence level, CL) areas as the target sectors for
reconstruction.

(1) The Weddell Sea (50°W-20°E, hereafter referred to as WS).
The NLSIE in WS was reconstructed using the South Orkney Fast-
Ice (SOFI) series as a proxy. The SOFI record is an annual record
of fast-ice around the South Orkney Islands from 1903 to 2008.
The day of continuous fast-ice formation, the timing of ice break-
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out, and the duration of ice coverage have been correlated with
the WS ice cover [43,44]. Our correlation analysis also showed that
the fast-ice duration was significantly associated (r = 0.6, 99% CL)
with the averaged NLSIE in the 50°W-20°E longitudinal band from
1979 to 2008 (Fig. S1a and Table S1 online).

(2) The Bellingshausen Sea (50°-90°W, hereafter referred to as
BS). The NLSIE in BS was reconstructed using the annual net accu-
mulation record from the Bruce Plateau ice core extracted from the
Antarctic Peninsula, covering the period of 1900-2009 [41]. The
accumulation rate exhibited a significant relationship (r = —0.56,
99% CL) with the averaged NLSIE in the 50°-90°W longitudinal
band during 1979-2009 (Fig. S1b and Table S1 online).

(3) The Amundsen Sea (90°-140°W, hereafter referred to as AS).
The NLSIE in AS was reconstructed using SOFI series, given its sig-
nificant negative correlation (r = —0.65, 99% CL) with the averaged
NLSIE in the 90°-140°W longitudinal band (Fig. S1a and Table S1
online). Some studies have shown that the SOFI record represents
sea ice change in the AS [42,44] in the context of the variability of
the Antarctic Dipole.

(4) The Ross Sea (160°E-140°W, hereafter referred to as RS). The
NLSIE in RS was reconstructed using the MSA concentration
derived from the Ferrigno and Erebus Saddle ice cores. The MSA
concentration in the Ferrigno ice core was shown to be a robust
proxy for winter SIE in RS for the period of 1703-2010 [35]. The
MSA concentration in the Erebus Saddle ice core was used as a
proxy to reconstruct the summer sea ice state in RS [45]. Our cor-
relation analysis also suggested that the MSA concentrations in
both the Erebus Saddle and Ferrigno demonstrated a good relation-
ship with the NLSIE in RS (Fig. S1c, d online) and their leading prin-
cipal component (PC1) was significantly correlated (r = 0.6, 99% CL)
with the averaged NLSIE in the 140°W-160°E longitudinal band
since 1979 (Table S1 online).

(5) The Indian and western Pacific sector of the Southern Ocean
(50°-150°E, hereafter referred to as IndWPac). The NLSIE in
IndWPac was reconstructed using MSA records obtained from the
LGB69 [34] and Law Dome ice cores [30]. The LGB69 ice core covers
294 years, from 1708 to 2001, and the Law Dome ice core covers
155 years, from 1841 to 1995. The PC1 of the annual MSA concen-
tration of the LGB69 and the Law Dome ice cores was significantly
correlated (r = 0.55, 95% CL) with the averaged NLSIE in the 50°-
150°E longitudinal band during 1979-1995 (Fig. Sle, f and
Table S1 online).

2.2. Validation of sea ice data

Satellite-derived sea ice concentration in the Antarctic has been
used to evaluate the reconstructed sea ice variability since the
beginning of the satellite era. These concentrations are derived
from the Nimbus 7 Scanning Multichannel Microwave Radiometer,
DMSP Special Sensor Microwave/Imager, and Special Sensor Micro-
wave Imager and Sounder sensors [46]. The data have a spatial res-
olution of 25 km and cover the period from November 1978 to the
present. The satellite-derived sea ice concentration is used to cal-
culate the NLSIE, defined as the northernmost position of the 15%
isopleth of the ice concentration for each degree of longitude.

2.3. Climate indices and reanalysis

The following climate indices are used to understand the poten-
tial role of large-scale modes of climate variability in the trends
and multi-decadal variability of NLSIE in the different sectors of
the Southern Ocean.

The Interdecadal Pacific Oscillation (IPO) is a measure of the
decadal to interdecadal variability of the SST anomaly in the Pacific
Ocean [47]. The index that tracks the IPO change is defined as the
difference between SST anomalies averaged over the central
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Fig. 1. Observed Antarctic sea ice concentration (colored area) trends for the extended winter season (August, September, and October) from 1979 to 2016. The red stars
denote the proxy sites for sea ice reconstruction. The sectors are indicated as the Weddell Sea (WS), Bellingshausen Sea (BS), Amundsen Sea (AS), Ross Sea (RS), and Indian and

western Pacific Ocean (IndWPac).

equatorial Pacific (10°S-10°N, 170°E-90°W) and averaged in the
northwest (25°-45°N, 140°E-145°W) and southwest Pacific (50°-
15°S, 150°E-160°W) [48]. The IPO index since 1854 can be found
at the website of the NOAA Physical Sciences Laboratory (http://
www.esrl.noaa.gov/psd/data/timeseries/[POTPI/).

The Southern Annular Mode (also known as the Antarctic Oscil-
lation) index is defined as the mean latitudinal difference in sea
level pressure at 40° and 65°S; it is considered as the prevailing
mode of atmospheric circulation in the Southern Hemisphere and
explains about 35% of the extratropical Southern Hemisphere cli-
mate variability [49]. The SAM index since 1850 is available online
(http://ljp.gcess.cn/dct/page/65609).

To facilitate the quantification of atmospheric circulation pat-
terns associated with different phases of the aforementioned cli-
mate modes, we also used SST and 850 hPa wind field data from
the European Centre for Medium-Range Weather Forecasts Interim
Reanalysis (ERA-Interim; 1979 onwards) [50]. The reanalysis fields
and the observed sea ice data were averaged for different phases of
the climate indices to generate composite maps. Here we focus on
August, September, and October (hereafter referred to as extended
winter) because the maximum SIE typically occurs in September.
In this study, the high (low) index years were identified as years
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with greater (smaller) than one standard deviation. The final com-
posite maps showed the differences between the years with high
and low values of the climate indices. The statistical significance
of the composites was assessed using the Student’s t-test.

We further used the data assimilation-based surface tempera-
ture reconstructions [51] to calculate the relationship between
sea ice and surface temperature in the Antarctic. The mean surface
temperature (MST) over the last two millennia was assimilated
based on the new stable oxygen isotopes in ice cores compiled as
part of the Antarctica2k framework [52]. The five Antarctic regions
(i.e., Dronning Maud Land, Antarctic Peninsula, West Antarctic Ice
Sheet, Victoria Land-Ross Sea, and Wilkes Land Coast) adjacent to
the five relevant sectors were selected.

2.4. Reconstruction, calibration, and validation

Relationships between the proxies and sea ice data were inves-
tigated using linear regression and correlation analyses. The NLSIE
was reconstructed using geometric mean regression (also known
as reduced major axis regression) [32,35,53], which accounts for
errors and noise in both the dependent and independent variables.
For the IndWPac sector, the empirical orthogonal function (EOF)
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analysis [54] was first used to calculate the PC1 of the MSA records
from the LGB69 and Law Dome ice cores, and then the PC1 was
used for the reconstruction, so as to maximize their association
with NLSIE. The same procedure was applied to the RS sector, for
which the MSA records from Ferrigno and Erebus Saddle ice cores
were employed. The leave-one-out cross-validation method was
used to verify the reconstruction results [55], and the transfer
function in each sector was demonstrated to be valid. The uncer-
tainty in each reconstruction was obtained by calculating the root
mean square error (RMSE) based on the satellite record.

2.5. Time series analysis

Linear trends in the reconstructed NLSIE in all the five sectors
were calculated via ordinary least squares slope estimation, and
the significance level was estimated via a two-tailed Student’s t-
test. The method of sliding time windows was used to detect trend
changes in the Antarctic composite NLSIE for various lengths of
time. The sliding time windows used in this study ranged in length
from 10 to 110 years.

A climatic regime shift is commonly deemed as a rapid reorga-
nization of climate from one relatively stable state to another.
Herein, we used a sequential data processing scheme developed
by Rodionov [56,57] to identify the timing of possible regime shifts
in the NLSIE time series. Multi-decadal shifts in mean conditions in
the regional NLSIE were identified via a simple regime shift detec-
tion technique using shift detection v3-2 software.

We used multiple linear regression to estimate the degree to
which the changes in the reconstructed NLSIE could be fitted by
climate indices. Stepwise regression, which identified a useful sub-
set of the predictors, was used. The MST, SAM, and IPO indices
were selected as predictors. These indices were smoothed using a
31-year running average to extract the variability at the multi-
decadal time-scale. To avoid multicollinearity, we identified the
indices that were significantly correlated with the NLSIE. First,
we selected the index with the largest correlation coefficient and
examined its contribution to the NLSIE. Then, we selected one
more index that had a significant correlation coefficient with the
NLSIE, added it to the regression, and examined the joint contribu-
tion of the two indices. Finally, we assessed the relative contribu-
tion of each index in the multiple regression.

3. Results
3.1. Reconstructed NLSIE

The significant positive relationship (r = 0.6, 99% CL) between
the SOFI record and the NLSIE in the WS sector allowed us to recon-
struct the NLSIE back to 1903 (Fig. 2a, black line). The mean NLSIE
in the WS sector was at 56.45°S during 1903-2007. Superimposed
on strong interannual variability, the NLSIE has shown a significant
decreasing trend (>95% CL) at a rate of —0.08° per decade since the
1900s. Regime shift analysis identified an abrupt change in the
NLSIE in 1951 (Fig. 2a, blue line). The reconstruction of sea ice
change in the WS sector was consistent with the estimates of sum-
mer SIE based on whaling records and ship logbooks [58,59], which
indicated a decline in sea ice in the WS since the early 20th
century.

The reconstructed NLSIE in the BS based on annual accumula-
tion from the Bruce Plateau ice core was significantly correlated
with the satellite-derived NLSIE from 1979 to 2009 (r = —0.56,
99% CL, Fig. 2b). Here the reconstructed NLSIE in the BS covers from
1900 to 2009 and extended from 50° to 90°W, which represented a
larger sector than that estimated by Abram et al. [32] (70°-100°W)
(Fig. 2b, black line). The mean NLSIE in the BS was at 61.83°S dur-
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ing 1900-2009. Linear trend analysis for the entire period showed
a significantly (99% CL) decreasing trend at a rate of —0.17° per
decade. The decreasing trend of NLSIE is in agreement with other
climate records and reconstructions [32,41,44]. A decreasing trend
with regime shifts in 1978 and 1992 (Fig. 2b, blue line) means that
the NLSIE in the BS has experienced accelerated retreat since the
late 1970s.

The NLSIE in the AS sector from 1903 to 2007 (Fig. 2c, black line)
was reconstructed according to the significant relationship
between the SOFI record and the satellite-derived NLSIE in the
AS sector from 140° to 90°W during 1979-2007 (r = —0.65, 99%
CL). The mean NLSIE in the AS was at 65.02°S during the entire per-
iod of 1903-2007. A significant (95% CL) upward trend at a rate
of +0.08° per decade was identified during the entire period, and
a regime shift occurred in 1951 (Fig. 2c, blue line). The NLSIE vari-
ability in the AS was contrary to that in the WS sector, largely due
to the Antarctic Dipole, which is a leading mode of Antarctic sea ice
variability and usually exhibits an inverse relationship between
the AS and WS [42].

The MSA records for both the Ferrigno and Erebus Saddle ice
cores were significantly correlated with NLSIE in the RS from
1979 to 2006 (Fig. S1 online). To better interpret sea ice variability
in the RS, the PC1 of the leading EOF mode for these two records
was used for the NLSIE reconstruction (Fig. 2d, black line). The
PC1 had a significant correlation with the satellite-derived NLSIE
during 1979-2006 (r = 0.6, 99% CL, Fig. 2d). Here, the NLSIE
spanned from 160°E to 140°W, which represented a much wider
sector than that estimated in previous reconstructions [35,40].
The mean NLSIE in the RS was at 62.46°S during 1810-2006. Linear
trend analysis for the entire period identified a significantly (99%
CL) increasing trend at a rate of +0.02° per decade. The increasing
trend agrees with previous reconstructions [35,40,42], which sug-
gested a tendency toward more ice cover in the RS. The regime
shifts occurred in 1840, 1876, 1933, 1947, and 1998. A stepwise
increasing trend with regime shifts in 1947 and 1998 (Fig. 2d, blue
line) means that the increasing NLSIE trend in the RS was acceler-
ated to +0.07° per decade when calculated over the period span-
ning 1940s-2000s.

The NLSIE in the IndWPac sector since 1841 (Fig. 2e, black line)
was reconstructed based on the significant correlation between the
PC1 of the MSA records from the LGB69 and Law Dome ice cores
and the satellite-derived NLSIE in the IndWPac during 1979-
1995 (r = 0.55, 95% CL, Fig. 2e). The mean NLSIE in the IndWPac
was at 59.51°S during 1841-1995. Superimposed on strong inter-
annual variability, the NLSIE showed a significantly decreasing
trend at a rate of —0.03° per decade (95% CL) over the entire period.
The decrease in the NLSIE was not linear during 1841-1995, and
the regime shifts occurred in 1930 and 1969. A remarkable retreat
of sea ice has occurred since the late 1960s, and its mean NLSIE is
1.24 standard deviations lower than the NLSIE baseline (1841-
1960) (Fig. 2e). The significant (95% CL) declining trend agrees with
reconstructions published by Curran et al. [30] and Xiao et al. [34]
and with whaling records [60] and reports of penguin populations
[61], which suggest that sea ice reduced in the 1970s.

3.2. Potential drivers of NLSIE trends and multi-decadal variability

It is essential to understand the factors that caused the afore-
mentioned changes in NLSIE for the past 100-200 years and how
we can obtain insight sea ice anomalies during warm and cold
periods. In the context of global warming, anomalies in atmo-
spheric circulation are considered to be one of the important fac-
tors driving the increasing trend in Antarctic sea ice. It is well
known that the SAM, which is generally related to the strength
of the westerlies and Amundsen Sea Low, plays an important role
in the dynamic processes of sea ice and climate in coastal
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Fig. 2. Northernmost latitude of sea ice edge (NLSIE) reconstructions (black), regime shifts of mean (blue), satellite-derived NLSIE (red), and the associated uncertainty bands
(1 RMSE, grey areas) for the WS (a), BS (b), AS (c), RS (d), and IndWPac (e) sectors. The horizontal dotted lines indicate standard deviation (¢) ranges around the baseline
mean (entire period). The central map shows the reconstructed trends in the NLSIE (latitude per year) during the past 100-200 years.

Antarctica [11,62,63]. In response to a positive SAM trend observed
since the mid-20th century [49,64], which is associated with the
increased equatorward Ekman drift and warm poleward (cold
equatorward) winds into the BS (RS) region, sea ice increases in
the RS and decreases in the BS [10,62,65,66]. The IPO, an internally
generated mode of climate variability, influences the Antarctic
atmospheric circulation and sea ice with changes in the SST in
the Pacific sector, specifically in the Ross, Amundsen, and Belling-
shausen seas [14,15]. The negative trend in the IPO, with an aver-
age cooling of tropical Pacific SST and a deepening of the
Amundsen Sea Low, accelerated the increasing trend in Antarctic
sea ice between 2000 and 2014, particularly in the RS region
[14]. However, the relationship between sea ice and regional tem-
perature and the moderating role of atmospheric circulation at the
multi-decadal scale is insufficiently understood. To investigate the
potential drivers of the NLSIE trends and the multi-decadal sea ice
variability described in Section 3.1, we compared the NLSIE series
of the five sectors with surface temperature in coastal Antarctica
and the indices (SAM and IPO) characterizing climate variability
in the Southern Hemisphere. Conventionally, the average trend
over a 30 year span is used to define the climatology. The NLSIE,
MST, and climate indices were smoothed using a 31-year running
average to remove high-frequency variations, emphasizing multi-
decadal variability and long-term trends. Linearly detrended time
series were further compared to analyze their behavior at the
multi-decadal scale.

The NLSIE in the WS exhibited no significant relationship with
the MST in Dronning Maud Land (Fig. 3a), whereas the decreasing
trend in the NLSIE in the BS was consistent with the warming trend
in the MST in the Antarctic Peninsula [67] during the 20th century
(Fig. 3b). The rapid decrease in the NLSIE in the BS, which is close to
the eastern margin of the Amundsen Sea Low, emerged after the
1950s and could be closely associated with the positive SAM
[63,66]. Furthermore, the regime shifts of the NLSIE in the BS that
occurred in the late 1970s and early 1990s were identified consis-
tent with the positive shifts of the SAM [64]. We further used mul-
tiple regression to calculate the contribution rates of changes in the
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SAM, IPO, and MST to the NLSIE variation (Table 1). The SAM, IPO,
and MST together can explain 91.5% of the NLSIE in WS in terms of
the long-term trend. The relative contributions of the SAM, IPO,
and MST are 88.74%, 11.15%, and 0.11%, respectively. For the BS
sector, the SAM, IPO, and MST together can explain 83.6% of the
NLSIE long-term trend. The relative contributions of the SAM,
IPO, and MST are 87.7%, 12.2%, and 0.1%, respectively. The results
indicate that the long-term linear trend of the NLSIE in the WS
and BS is mainly influenced by the SAM. Composite differences
in SST, wind field, and the NLSIE anomalies between the high
and low values of climate indices (Fig. 4) were obtained to further
investigate the potential mechanisms. In the context of the positive
SAM, the anomalous winds associated with the deepening of the
Amundsen Sea Low (Fig. 4a, b) advect warm air to the BS and the
Antarctic Peninsula [41,68,69]. The trend of warm air approaching
the continent and the southward winds during the 20th century
associated with the positive SAM might decrease sea ice in the
BS and WS (Fig. 4c), and vice versa.

Changes in the NLSIE in RS are associated with the MST in the
Victoria Land-Ross Sea during 1840s-1910s, when the SAM was
neutral. In contrast, during periods in which the SAM was signifi-
cantly positive (after the 1970s) or negative (1910s-1950s),
changes in the NLSIE in the RS tend to be positively correlated with
the SAM instead of the MST (Fig. 3d). Similar relationships were
observed between the NLSIE in the AS, climate indices, and tem-
perature in the West Antarctic Ice Sheet during the 20th century
(Fig. 3c). The anti-phase relationship before the 1960s between
the NLSIE and IPO indicates that the changes in the NLSIE might
be partially attributed to the variation in the IPO (Fig. 3c). The
SAM, IPO, and MST together can explain 81% and 93% of the vari-
ances in the long-term trends of the NLSIE in RS and AS, respec-
tively. The relative contributions of the SAM to the NLSIE in the
AS (87.31%) and RS (97.8%) are larger than those of the IPO and
MST. The IPO plays a secondary role in the AS and its contribution
rate is 10.97% (Table 1). Composite analyses suggest that the rela-
tively cool (warm) SST in the south Pacific (Fig. 4a) and the strong
northward (southward) winds from 140°W to 170°E (Fig. 4b) are
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Fig. 3. Phasing of long-term variability over the past 100-200 years from proxy-derived indicators for the WS (a), BS (b), AS (c), RS (d), and IndWPac (e) sectors. Within each
region (a—e), records were compiled as normalized data smoothed with a 31-year running average according to the parameter that they represent: NLSIE (blue), the extended
winter (August, September, and October) mean Southern Annular Mode (SAM, wine) and Interdecadal Pacific Oscillation (IPO, green), and mean surface temperature (MST,
orange; DML, AP, WAIS, VL-RS and WL means Dronning Maud Land, Antarctic Peninsula, West Antarctic Ice Sheet, Victoria Land-Ross Sea, and Wilkes Land Coast,
respectively). The central map shows the reconstructed trends in the NLSIE (latitude per year) during the past 100-200 years.

Table 1

Contributions of the SAM, IPO and MST to the long-term trend of NLSIE during the past 100-200 years obtained by the multiple linear regression.

Total explained variance (%)

Relative contribution of SAM (%)

Relative contribution of IPO (%) Relative contribution of MST (%)

NLSIE_WS 91.5 88.74
NLSIE_BS 83.6 87.7

NLSIE_AS 93 87.31
NLSIE_RS 81 97.78
NLSIE_IndWPac 75.1 88.28

11.15 0.11
12.2 0.1
10.97 1.72
1.11 1.11
1039 1.33

associated with the expansion (retreat) of the SIE in the Ross-
Amundsen Sea (Fig. 4c) when the SAM is positive (negative).
There appears to be no significant relationship between the
time series of the NLSIE in IndWPac and annual MST anomalies
in the Wilkes Land coast sector (Fig. 3e). As shown in Fig. 3e, the
relationship between the NLSIE in the IndWPac and the SAM was
anti-phased at the multi-decadal scale, as the NLSIE retreats pole-
ward when the SAM is positive. Multiple regression analysis shows
that the SAM, IPO, and MST together can explain 75.1% of the vari-
ance in the trend of the NLSIE in IndWPac (Table 1). It is observed
that the contribution of the SAM to the NLSIE in the IndWPac
(88.28%) is greater than that of the IPO (10.39%). Composite analy-
ses indicate that the strong westerlies in the IndWPac during the
positive SAM phase (Fig. 4b) would limit SIE expansion (Fig. 4c).
Further detrending analyses (Fig. S2 and Table S2 online) show
that the impact of the IPO on the NLSIE in the AS, BS, and WS
increases (>60%), and this indicates that the multi-decadal oscilla-
tion of the NLSIE in these three sectors is mainly affected by the
IPO. Although the impact of the IPO in the IndWPac sector has
increased after detrending, the SAM still makes the largest contri-
bution (>50%) to the NLSIE in the IndWPac. For the RS sector, the
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multi-decadal oscillation of the NLSIE is primarily affected by the
SAM, because the relative contribution rate is 100% after detrend-
ing. Previous studies involving composite analyses suggested that
the same (inverse) phases of the SAM and IPO have contrary (sim-
ilar) effects on the NLSIE in the AS to WS sector (Fig. 4c, f) by
impacting the strength of the Amundsen Sea Low (Fig. 4b, e)
[14,63,65]. Consistent with the increase in the meridional temper-
ature gradient in the southern Pacific (Fig. 4d), the positive IPO
produces an anomalous anticyclonic circulation (Fig. 4e). The
anomalous southward winds in the AS suppress sea ice growth,
whereas the anomalous northward winds in the BS and western
WS are conducive to the increase in sea ice (Fig. 4f) during the pos-
itive IPO phase, and vice versa. These relationships are evidenced
by the slowdown of the rate of increase (decrease) of the AS
(WS) during the 1970s-1990s, when both the SAM and IPO were
in the positive phase (Fig. S2a, c online).

Owing to the lack of SST proxy records, an important contribu-
tion of the SST to sea ice has not been discussed in this study. How-
ever, according to the only two long-term SST records obtained
from the Antarctic Peninsula and the coast of George V Land, it
can be inferred that the accelerated decreasing trends of the NLSIE
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in the IndWPac and BS after the 1970s could be partly attributed to
the increase in SST [70,71], and are the superposed results of the
positive trend of the SAM [64] and SST [70]. The aforementioned
results suggest that, over the last 200 years, changes in the extent
of Antarctic sea ice during the extended winter were not forced
solely by temperature or by atmospheric circulation, but rather
by the combination of these factors.

3.3. Antarctic composite NLSIE trends during the 20th century

Although the current understanding of the historical sea ice vari-
ation in the Antarctic is not sufficient to reconstruct circum-
Antarctic sea ice at the spatiotemporal scale over the past 200 years,
our reconstructions, primarily based on various ice core proxies,
could provide insight into sea ice variability for almost the entire
Southern Ocean during the 20th century (Fig. 3). The total NLSIE in
the Antarctic (hereafter NLSIE_Ant) was calculated as the weighted
mean of the reconstructed composites in the five sectors. The result-
ing Antarctic NLSIE during the 20th century (1903-1995) after
reconstruction is shown in Fig. 5a, along with the observed record
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(1979-2016). The 11-a running average was used to compare the
consistency in trends between the reconstructed and observed ser-
ies without losing the decadal to multi-decadal variability. Overall,
the decadal (11-a) mean of the NLSIE_Ant shows a significant
decreasing trend (—0.03° per decade, 99% CL) during the whole time
period and an increasing trend after the 1980s.

To further investigate the status of the observed increasing
trend in the historical context, trends for NLSIE_Ant were calcu-
lated using differing start years and interval lengths (Fig. 5b). It
should be noted that the data after 1979 in Fig. 5b are derived from
observations. It was found that the significant decreasing in the
NLSIE is incontrovertible if the start year was set no later than
1965 and a window length longer than 40 years was set. For time
windows shorter than 40 years, the trend estimation values were
positive during the 1930s-1940s and 1980s-2010s, and negative
during the 1910s-1930s and 1950s-1970s. During the interval
beginning from either year within 1981-1991, the sea ice extent
demonstrated an increasing trend. In terms of its rate of increase
and lifespan, the recent sea ice increase is unprecedented under
the background of global warming.
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Fig. 5. (a) Reconstructed (gray) and satellite-derived (black) total NLSIE for the Antarctic (NLSIE_Ant) as annual (thin lines) and running decadal averages (red thick lines). (b)
Trends for NLSIE_Ant with differing start years and interval lengths. All trends significant at the 95% level are stippled.
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Combining the results in Section 3.2, we inferred that the
decreasing trend of NLSIE_Ant during the 1955-1980 is dominated
by the significant declines in the WS, BS, and IndWPac, which are
primarily driven by the positive SAM and the SST warming in the
coastal region of the Antarctic Peninsula and east Antarctica [72].
The significantly increasing trend from the early 1980s to the
mid-2010s is dominated by the accelerated expansion of sea ice
in the RS and AS, which is primarily driven by the anomalous
northward winds associated with the positive SAM.

4. Conclusions

In this study, five ice cores and one fast ice record were revisited
and used to reconstruct the NLSIE in the five sectors of the South-
ern Ocean. The MSA records from the LGB69 and Law Dome ice
cores and those from the Erebus Saddle and Ferrigno ice cores
are good proxies for the NLSIE in the IndWPac and RS, respectively.
The snow accumulation record from the Bruce Plateau ice core is a
good proxy for the NLSIE in the BS, and the SOFI record is useful for
representing the NLSIE in the WS and AS sectors. All the recon-
structed NLSIE trends capture a large portion of the observed NLSIE
variability. Based on the analyses of the linear trend and regime
shifts, our study reveals that the NLSIE in the IndWPac exhibited
a significant (95% CL) decreasing trend at a rate of +0.03° per dec-
ade during the past 150 years, in which the most profound decline
occurred during the late 1960s. In contrast, the NLSIE in the RS
exhibited a significant (99% CL) increasing trend at a rate
of +0.02° per decade during the past 200 years, in which the largest
contribution comes from the last 60 years (+0.07° per decade dur-
ing 1940-2006). In the AS, a significant (95% CL) increasing trend in
the NLSIE has been observed since 1900 (+0.07° per decade),
whereas the BS and WS exhibited a decreasing trend of —0.17°
(99% CL) and —0.08° (95% CL) per decade during the 20th century,
respectively. In both the AS and WS sectors, the NLSIEs indicate
that a regime shift occurred in the early 1950s, whereas the regime
shift occurred in late 1970s in the BS.

Compared with the climate indices and regional temperature
records, our analyses suggest that the long-term linear trend of the
NLSIE in each sector is significantly related to the SAM. The strength-
ened westerlies and Amundsen Sea Low, which are significantly
associated with a positive SAM trend, result in sea ice retreat in
the IndWPac, BS, and WS and in sea ice advance in the RS and AS.
At the multi-decadal scale, the IPO plays a dominant role in the NLSIE
variability in the AS, BS, and WS, whereas the contribution of the
SAM is the largest in the IndWPac and RS. We infer that the multi-
decadal forcing of the IPO might decelerate the rate of change of
the NLSIE in the AS and WS, whereas the warming in the Indian
Ocean and Antarctic Peninsula might accelerate the rate of retreat
of the NLSIE in the IndWPac and BS from the late 20th century.

Our total composite NLSIE for the Antarctic shows a significant
decreasing trend (—0.03° per decade, 99% CL) during the 20th cen-
tury, and the rapid decline is detected during the period from 1955
to 1980. This suggests that the upward trend observed by satellites
likely began in the early 1980s. When interpreting the recent
increasing trend, the start point should be explicitly specified.

It should be noted that the results presented here may influence
by potential uncertainty associated with the limited data used for
the reconstruction and the analysis used to produce long-term cli-
mate indices. The ice-core-based sea ice reconstructions are usu-
ally limited by their dependence on favorable meteorological
conditions (e.g., onshore winds). Thus, combining more available
proxies from multiple archives is necessary to reduce the uncer-
tainty produced by specific proxies and to investigate Antarctic
sea ice variability at longer time scales and it links with climate
modes. It is also necessary to further explore the mechanism of
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sea ice changes at the multi-decadal scale in combination with cli-
mate models.
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