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Soil spatial information has traditionally been presented as polygon maps at coarse scales. Solving global
and local issues, including food security, water regulation, land degradation, and climate change requires
higher quality, more consistent and detailed soil information. Accurate prediction of soil variation over
large and complex areas with limited samples remains a challenge, which is especially significant for
China due to its vast land area which contains the most diverse soil landscapes in the world. Here, we
integrated predictive soil mapping paradigm with adaptive depth function fitting, state-of-the-art
ensemble machine learning and high-resolution soil-forming environment characterization in a high-
performance parallel computing environment to generate 90-m resolution national gridded maps of nine
soil properties (pH, organic carbon, nitrogen, phosphorus, potassium, cation exchange capacity, bulk den-
sity, coarse fragments, and thickness) at multiple depths across China. This was based on approximately
5000 representative soil profiles collected in a recent national soil survey and a suite of detailed covari-
ates to characterize soil-forming environments. The predictive accuracy ranged from very good to mod-
erate (Model Efficiency Coefficients from 0.71 to 0.36) at 0–5 cm. The predictive accuracy for most soil
properties declined with depth. Compared with previous soil maps, we achieved significantly more
detailed and accurate predictions which could well represent soil variations across the territory and
are a significant contribution to the GlobalSoilMap.net project. The relative importance of soil-forming
factors in the predictions varied by specific soil property and depth, suggesting the complexity and
non-stationarity of comprehensive multi-factor interactions in the process of soil development.
� 2021 Science China Press. Published by Elsevier B.V. and Science China Press. This is an open access

article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Soil is being highlighted in the global agenda, for example in the
United Nations Sustainable Development Goals, with at least nine
out of the 17 goals directly related to soil use and management.
Soil is fundamental for global and regional issues such as food
security, land degradation, water cycling, biodiversity, carbon
sequestration, and ecosystem health. Detailed, accurate, and up-
to-date soil information is urgently needed to aid in developing
solutions for these issues and to support decision making concern-
ing natural resource management [1,2]. However, soil is highly
heterogeneous in geographical space. Its spatial variation has tradi-
tionally been presented as polygon maps of soil classes (techni-
cally, choropleth maps) usually at coarse scales, where mapping
units are shown as polygons. Most existing soil information has
been generated from historical soil surveys decades ago using the
traditional soil survey mapping paradigm [3,4]. It is spatially
coarse and out of date.

The GlobalSoilMap.net project plans to make a global digital soil
map using digital soil mapping techniques through the contribu-
tion of soil scientists around the world. It specifies predictions of
soil properties at a 90 m spatial resolution and for depth layers
0–5, 5–15, 15–30, 30–60, 60–100, and 100–200 cm. The targeted
soil properties include organic carbon (SOC), pH, cation exchange
capacity (CEC), bulk density (BD), coarse fragments (CF), available
water capacity, electrical conductivity and soil texture fractions
[5]. Efforts have been made on 90 m resolution predictive mapping
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studies of one or more soil properties over several countries
recently, including Australia (7.62 million km2), France (0.67 mil-
lion km2), Chile (0.76 million km2), the United States (9.37 million
km2), and China (9.6 million km2) [6–10]. Denmark (0.04 million
km2) even made 30 m resolution national maps of soil texture
[11]. Besides, coarser (250 to 5000 m) resolution maps were
explored at national (Brazil with 8.54 million km2) [12], continen-
tal (Africa with 30.2 million km2, Europe with 10.16 million km2)
[13,14], and global [15] extents.

Despite these efforts, the gap between soil information demand
and availability is still very large. For large areas with complex soil
landscapes where there is usually a limited number of sparse soil
survey points, how to accurately predict soil spatial variation at a
high resolution remains a challenging issue. First, almost all the
efforts have been based on legacy soil samples without precision
geographical positioning. Their reported geographical coordinates
may have location errors of much more than 90 m [16]. This makes
the legacy samples not appropriate for high resolution predictive
soil mapping. Second, environmental covariates are critical for pre-
dictive soil mapping. It is difficult to adequately characterize soil-
forming environments in complex soil landscapes. Third, it is also
difficult for predictive algorithms to adjust flexibly to a variety of
soil landscapes and make accurate predictions. Some studies use
depth as a covariate in model construction [9,15], but there is some
debate about how this strategy performs in comparison to pseudo-
three-dimensional mapping [17,18]. Lastly, most models in these
efforts cannot straightforwardly estimate prediction uncertainty.
A computation-intensive bootstrapping technique [19] has been
frequently used, but the resulting uncertainty could be itself highly
uncertain when using sparse samples [20]. Although geostatistical
models can directly produce prediction variance as a measure of
uncertainty, they may not be suitable because of the difficulty in
meeting stationarity assumption and calibrating a reliable model
for such areas.

China is typical for the above challenges. It has a vast land of
over 9.6 million km2. It covers almost all kinds of thermal condi-
tions including tropical, subtropical, warm temperate, middle tem-
perate, cold temperate zones from south to north and the Qinghai-
Tibet Plateau zone, and moisture conditions including humid,
semihumid, semiarid, and arid regions from southeast to north-
west due to the influence of the southeast monsoon. It includes a
variety of geomorphological types and mountainous areas occupy
nearly two-thirds of the land. It also has a long history of over
5000 years of agriculture. The spatial overlap of the factors results
in the most diverse and complex soil-forming environments in the
world. There are 14 soil orders, 138 great groups, and 588 sub-
groups according to Chinese Soil Taxonomy [21,22] and a similar
diversity in other soil taxonomies. But the number of soil survey
sites is often very limited due to China’s large area and difficult
accessibility in many areas.

Therefore, the objective of this study is to develop high resolu-
tion national gridded maps of basic soil properties at multiple
depths across China, under the constraints of limited number of
sparse soil survey points. As part of this process, the environmental
controllers of soil spatial variations will also be revealed.
Fig. 1. Locations of soil survey profiles points.
2. Data sources

2.1. Soil data

A systematic soil survey was conducted through the project of
National Soil Series Survey and Compilation of Soil Series of China
(2009–2019). In this survey, representative soil profiles were
selected according to Chinese Soil Taxonomy [22]. They are central
concepts of all soil types down to the level of soil series. These rep-
2

resentative soil profiles covered various soil-forming environments
across China. Soil pits were generally dug to a depth of 1.5–2 m or
until a lithic or paralithic contact. The complete soil profile was
described and sampled for each survey location by genetic horizon
with depth limits determined by soil surveyors, according to stan-
dard field soil survey methods [23]. The number of sampling
depths per profile ranged from only 1 to 12, with a mean value
of 4.3 and a standard deviation value of 1.4. The maximum depth
of profiles ranged from 5 to 750 cm, with a mean value of
117 cm and a standard deviation value of 92 cm. The geographical
coordinates of survey locations were recorded using a handheld
GPS receiver. Fig. 1 shows the locations of the 4844 soil profiles.
Samples were taken to laboratory and air-dried at room tempera-
ture and then passed through a 2 mm sieve. Soil pH, SOC, total
nitrogen (TN), total phosphorus (TP), total potassium (TK) and
CEC were measured in laboratory. BD was measured using undis-
turbed samples taken by a standard ring cut. The volume percent-
ages of CF in soil horizons were visually estimated in the field. The
CF includes broken bedrock, saprolite, alluvial stones, coarse sand
and secondary concretions (e.g., iron manganese nodules and lime
concretion). Soil thickness was observed in the field, which is
defined as the upper limit of non-soil materials in which the vol-
ume of CF (>2 mm) is greater than 75%. Table S1 (online) lists mea-
surement methods of the soil properties. They are all important
basic properties that associated with soil physical, chemical, and
biological processes, on which the assessment of soil functions
can be based.

Table S2 (online) lists the summary statistics of soil properties.
All soil properties had a wide range, resulting from the diverse bio-
climatic conditions and soil landscapes across the territory. For
example, soil pH values at 0–5 cm depth ranged from 3.1 to 10.4
with a mean value of 6.9 and a standard deviation of 1.5, covering
levels of strongly acidic, acidic, weakly acidic, neutral, weakly
calcareous, calcareous, and strongly alkaline. The mean values of
CF, BD, TK, and pH increased with increasing depth while
those of SOC, TN, TP, and CEC decreased with increasing depth.
Most soil properties were highly skewed except pH and BD, and
thus prior to modeling the sample data were log-transformed for
SOC, TN, TP, square-root transformed for CEC, TK, thickness, and
cube-root transformed for CF. Fig. S1 (online) shows the
histograms of soil properties at 0–5 cm depth before and after
the transformations.
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2.2. Environmental covariates

Soil formation is the result of interactions of climate, parent
material, topography, vegetation, and human activity over time.
We selected the environmental covariates which are associated
with these factors and processes. Considering that multi-factor
comprehensive interactions exert their influence on soil formation
mainly through water and heat, we also included land surface
moisture and thermal conditions in the list of environmental fac-
tors. We removed redundant environmental variables if their Pear-
son correlation coefficient values with other variables were greater
than 0.82. Table S3 (online) lists the covariates which were used for
soil spatial prediction in this study, grouped by the soil-forming
factor each represents.

The climatic variables covering the period 1970–2000 at a res-
olution of 30 arc-second were obtained from WorldClim (https://
www.worldclim.org/data/worldclim 21.html). Soil parent material
was represented by 30 m resolution Landsat 8 ETM + band 7
(shortwave infrared at 2.08–2.35 lm) and a clay mineral ratio
(band 5 / band 7) which are both designed for surficial lithology
and minerals detection. They were complemented by 90 m resolu-
tion regolith thickness [24] and wind effect. The former is related
to the balance between weathering (accumulation) and erosion
(removal) and can to a large extent reflect spatial difference of par-
ent materials. The latter, i.e., topographic exposure to wind, can
reflect wind contributes to parent materials, especially in deserts,
semi-deserts, and extensive loess-affected areas. It was computed
in SAGA GIS (http://www.saga-gis.org).

Topographic variables were computed based on a 90 m digital
elevation model (DEM) of the Shuttle Radar Topographic Mission
(http://srtm.csi.cgiar.org/srtmdata/) using the SAGA GIS. Vegeta-
tion and land use conditions were represented by 30 m resolution
Landsat 5 TM band 3, band 4 and the mean and standard deviation
of normalized difference vegetation index (NDVI) during the period
2000–2017. The mean represents an average vegetation status
while the standard deviation represents seasonality and is related
to land cover and cropping rotation patterns.

Land surface moisture conditions were represented by 30 m
resolution shortwave infrared band 5, band 7 and normalized dif-
ference water index (NDWI) [25] over 2000–2017. Thermal condi-
tions were represented by 1 km resolution seasonal mean land
surface temperatures (LST) computed from 8-day composite
MODIS LST data over 2002–2017 (http://modis.gsfc.nasa.gov). All
the covariates with national coverage were resampled to a raster
cell size of 90 m by bilinear interpolation.
3. Methods

The theory of soil-environment relations [26,27] contends that
the same environmental conditions develop the same soil. By
detailed characterization of soil-forming environment, it is
expected that fine differences in soil properties can be identified,
even with a limited number of soil observations in large and com-
plex area of interest. Based on this idea, we designed a method-
ological framework for mapping high resolution National Soil
Information Grids of China (Fig. 2). It considers a soil property (S)
and its prediction uncertainty (U) at a geographical location to be
a function (f) of its environmental factors (E) at that location (Eq.
(1)):

S&U <¼ f ðEÞ: ð1Þ
The E represents environmental covariates obtained by geo-

graphical information system and remote sensing techniques.
The function f represents model structure and parameters. The
structure is determined once an algorithm is specified. The
3

parameters are determined through model calibration and
optimization based on soil samples. The symbol <= represents
the process of implementing soil predictions, i.e., applying the
function f over geographical space in a high-performance parallel
computing environment. The S & U are outputs including the pre-
dicted soil property map and its associated uncertainty map.

3.1. Generating soil samples at a set of standard depths

Equal-area quadratic splines are commonly used to fit a contin-
uous depth function based on the properties measured by genetic
horizons [28]. The splines are mainly applicable to a vertically
gradual soil variation. However, soil property variation along a pro-
file often includes abrupt changes in reality. To reduce fitting
errors, we developed an automatic procedure for adaptive fitting.
It identifies abrupt changes using a threshold of the ratio of higher
value to lower value of two neighbouring horizons. This threshold
was set to 1.225 in this study. For the situation with an abrupt
change, a thin layer with 1 cm thickness is added between the
neighbouring horizons before the spline fitting. This forces the
fitted curve to respect profile morphology. The Spline Tool
(https://www.asris.csiro.au/methods.html) does not provide such
a procedure although it briefly illustrates the solution of adding
thin layers in its ‘‘readme” file. Fig. 3 shows examples of the fitting
for four SOC profiles. Original equal-area quadratic splines work
well for a gradually changing profile (see blue line in Fig. 3a) but
not for profiles with abrupt changes (see blue lines in Fig. 3b–d).
The adptive fitting procedure gives better results (see red lines
in Fig. 3b–d) in this situation. We derived from the fitted curve
the mean values of each soil property for six depth layers 0–5,
5–15, 15–30, 30–60, 60–100, and 100–200 cm. They were
taken as the standardized sample data for the following soil
predictions.

3.2. Predicting soil properties and estimating local uncertainties

Based on the soil samples, quantile regression forest [29], an
ensemble tree-based machine learning model, was constructed to
model the relationships between each soil property and the envi-
ronmental covariates at each depth layer. The algorithm was cho-
sen for three reasons. First, few predictive soil mapping studies
have tested this algorithm. Second, it directly estimates prediction
uncertainty, and the uncertainty estimation may be more accurate
and interpretable than that made by regression kriging, especially
for areas with sparse samples [30]. Third, it can deal with complex
non-linear relations and multivariate interactions and has high
predictive power [31].

This algorithm grows an ensemble of trees as in standard ran-
dom forest algorithm [32]. For regression, the prediction of a single
tree T(h) in the forest for a new data point X = x, i.e., the estimate of
the conditional mean of response variable Y given covariate X = x, is
obtained by averaging over original observed values Yi in leaf l(x, h)
(Eq. (2)):

Ŷ treeðxÞ ¼
Xn

i¼1

wiðx; hÞ Yi: ð2Þ

The weight vector wi(x, h) is given by a positive constant if
observation Xi is part of leaf l(x, h) and 0 if it is not, with the sum
of weights equal to one. The h is random parameter vector that
determines how a tree is grown (e.g., which covariates are consid-
ered for splitting at each node).

The prediction of the forest is approximated by the averaged
prediction of k single trees and is then given by a weighted sum
over all original observations (Eq. (3)). The weight vector wi(x) is
the average of wi(h) over the k single trees.

https://www.worldclim.org/data/worldclim+21.html
https://www.worldclim.org/data/worldclim+21.html
http://www.saga-gis.org
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Fig. 2. Methodological framework for mapping high resolution National Soil Information Grids of China.
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Fig. 3. Examples of splines fittings for four soil organic carbon (SOC) profiles. Blue lines represent the fittings using original equal-area quadratic splines, and red lines
represent the fittings using the adaptive fitting procedure.
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Ŷ forestðxÞ ¼
Xn

i¼1

wiðxÞ Yi: ð3Þ

It has been shown that the weighted observations used for esti-
mating the conditional mean also provide a good approximation of
the full conditional distribution. The conditional distribution func-
tion of Y, given X = x, is thus given by

F̂ðy X ¼ xj Þ ¼
Xn

i¼1

wiðxÞ 1f Yi6yg ; ð4Þ

where 1f Yi6yg is an indicator function. It is 1 if the condition is true
and 0 otherwise. The estimation of the conditional distribution con-
sists of three steps: (1) Grow k trees as in random forests, but for
every leaf of every tree, take note of all observations in this leaf,
not just their averages. (2) For a given X = x, drop x down all trees,
compute the weight wi(x, h) of observation for every tree and then
the weightwi(x) for every observation in the forest. (3) Compute the
estimate of the distribution function for all y using Eq. (4).

For a continuous distribution function, the a-quantile Qa(x) is
defined such that the probability of Y being smaller than Qa(x) is,
for a given X = x, exactly equal to a. With the above estimation
of the conditional distribution, the conditional quantiles Qa(x) are
derived using Eq. (5):

QaðxÞ ¼ inffy : Fðy X ¼ xj Þ P ag: ð5Þ
Thus, the algorithm can derive the quantile of any a value in

addition to the mean, as does standard random forest. For details
of this algorithm, please see Ref. [29].

There are three important parameters in the model: number of
variables used to train each tree (mtry), minimum number of ter-
minal nodes (nodesize) and number of trees to be generated (ntree).
We used the caret package [33] to optimize the mtry and nodesize,
and then used optimal parameter values (Table S4 online) to con-
struct final model for each soil property and depth. It is often not
necessary to fine-tune the ntree. Its default value of 500 is usually
sufficient to yield stable predictions.
5

Using the complete grid of environmental covariates as inputs,
the trained models were applied over space to generate national
gridded soil property maps with a resolution of 90 m at the depths
0–5, 5–15, 15–30, 30–60, 60–100, and 100–200 cm. The uncer-
tainty of soil property predictions was simultaneously estimated
at every pixel and depth, which was expressed as upper and lower
limits of 90% prediction interval. The limits were identified using
the 0.05 and 0.95 quantiles of empirical distribution. The predic-
tion interval at the confidence level reports the range of values
within which the true value is expected to occur 9 times out of
10 [34]. To facilitate comparison, we further calculated a ratio of
the prediction interval to the median (i.e., 0.5 quantile), and used
the ratio as an uncertainty index [35]. The bigger the ratio for a
pixel, the higher the uncertainty of prediction at the pixel would
be. In addition, for the data-transformed soil properties, their
back-transformations were not performed directly on final predic-
tions of a forest. For a pixel location, we input its environmental
data into the trained forest to obtain the values in each leaf of each
tree. We then did back-transformation, e.g., exponentiation, on the
values at each leaf. From that we calculated mean and quantiles as
outputs of the forest for this pixel. That is, the transformed values
were used to build the trees, but once they were built we went
back to the original scale. The transformed data is expected to lead
to more balanced trees and more model stability compared to the
original skewed data.

In order to analyze the controlling environmental factors on
spatial variations of soil properties, we obtained the relative
importance of covariates from the trained models. The relative
importance was estimated based on the increase in mean square
error (i.e., %IncMSE) when a covariate is randomly permuted. The
bigger the increase, the more important is the covariate.

3.3. Performing high-performance parallel computing

The prediction grid covers the territory as a 90 m horizontal res-
olution raster, in an Albers Equal-area projection system with stan-
dard parallels 25� and 47�N and a central meridian of 105�E. Due to
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large area and fine resolution, prediction computation was made
on approximately 1.2 billion pixels for each soil property at a
depth. There were 72 GB data of covariates as model inputs. This
demands a large amount of computation resources, which is pro-
hibitive for an ordinary computer. We constructed a high-
performance parallel computing environment of national geo-
graphical space for implementing the soil predictions. It employed
two Lenovo ThinkStation P700 workstations, each having two Intel
Xeon E5-2643V3 CPUs with 12 cores and 64 GB RAM (random
access memory). The territory was divided into 107 rectangle tiles
for parallel computation, each 400 km � 400 km. The open source
R programming language environment (http://www.r-project.org/
index.html) was used with packages ‘‘ranger” [36] for model con-
struction, ‘‘caret” [33] for model optimization, ‘‘snowfall” [37] for
parallel computation, and ‘‘rgdal” [38] and ‘‘ggplot2” [39] for data
processing and visualization.

3.4. Evaluation criteria

The 10-fold cross validation method was used to evaluate accu-
racy performance of the predictive mapping of each soil property
and depth. Statistics including Model Efficiency Coefficient (MEC)
[40], root mean square error (RMSE), and mean error (ME) were
calculated for the evaluation. The predicted soil property maps of
this study were compared with three previous soil map datasets.
The first is the 250 m resolution SoilGrids250m developed by
Ref. [15] with predictive mapping methods. The second is the
1 km resolution Soil Characteristics dataset made by Ref. [41] with
a polygon linkage method (http://globalchange.bnu.edu.cn). The
last is the Harmonized World Soil Database (HWSD) derived soil
property maps using a soil type linkage method (http://www.fao.
org/soils-portal/data-hub/soil-maps-and-databases/harmonized-
world-soil-database-v12/en/). The HWSD was developed through
merging regional and national soil data across the world [42].
The improvement of our predictions relative to a previous soil
map was calculated based on the MEC and RMSE respectively using
the following equations:

RIMEC ¼ MECnew �MECprevious

MECprevious
; ð6Þ

RIRMSE ¼ RMSEprevious � RMSEnew

RMSEprevious
; ð7Þ

where RIMEC and RIRMSE are relative improvement with regard to
MEC and RMSE respectively, MECnew and RMSEnew are accuracy
statistics for our predictions, and MECprevious and RMSEprevious are
accuracy statistics for a previous soil map.

In addition, a prediction interval coverage probability (PICP)
was calculated for each soil property and depth to evaluate predic-
tion uncertainty. This is the proportion of observations that are
included within the corresponding prediction interval [34]. If the
uncertainty estimates have been reasonably defined, the PICP
should be close to 0.90 for a 90% prediction interval.

4. Results and discussion

4.1. Predictive performance

Table 1 lists 10-fold cross validation results for the soil property
predictions of our study at multiple depths. Model performance
varied with specific soil properties. Soil pH was predicted with
the best accuracy, MEC = 0.71–0.72 at the depths less than
15 cm. Over 70% of pH variation was explained, and there was good
agreement between the predicted and the observed values. This is
in line with several studies which reported the best prediction
6

accuracy for pH among soil properties [7,15]. SOC content was pre-
dicted with good accuracy, MEC = 0.54–0.55 at the depths less than
15 cm, i.e., about 55% of SOC variation explained. This is substan-
tially better than the SOC prediction accuracy reported by Ref.
[7] for France, Ref. [9] for the United States and Ref. [8] for Chile.
Soil thickness was predicted with moderate accuracy
(MEC = 0.49), which was much better than the prediction accuracy
(MEC = 0.11) reported by Ref. [7] in the French national soil predic-
tions. Ref. [43] found it difficult to establish reliable predictive
models for soil thickness in Australia-wide predictions. The TN,
CEC, BD, TP, TK, and CF contents were predicted with moderate
accuracy (MEC = 0.36–0.48) at the depths less than 15 cm, i.e.,
36%–48% of soil property variations explained. The accuracy was
comparable to that of the studies of Refs. [7–9].

Model performance also varied with depth. The prediction
accuracy of SOC, TN, and BD decreased substantially with increas-
ing depth while CEC, CF, and TK decreased slightly with increasing
depth. Such decline in accuracy has been observed by previous SOC
prediction studies [7,8,43]. A major reason is that most covariates
mainly characterize surface environmental conditions and thus
have relatively weaker relationships with the deeper soil layers.
In contrast, the prediction accuracy of pH and TP content slightly
increased with increasing depth. This may be partly because the
two properties could be more stable at subsurface layers in a broad
scale and thus respond more stably with regional covariates. This is
similar to the result of Ref. [8] which showed an overall increase of
prediction accuracy of pH with increasing depth across Chile, but
most studies [7,43] reported an opposite pattern. In addition,
almost all our predictions were overall unbiased with ME values
close to zero.

4.2. Comparisons with the existing soil map datasets

Table 1 also lists 10-fold cross validation results for previous
soil map datasets. Compared with them, our predictions achieved
remarkable accuracy improvement at almost all depths. Specifi-
cally, relative to the SoilGrids250m [15], our prediction of pH
had accuracy improvement of 11%–15% by MEC and 14%–18% by
RMSE, and the predictions of other properties (SOC, CEC, BD, and
CF) had accuracy improvement of 65%–482% by MEC and 8%–28%
by RMSE. Relative to the Soil Characteristics dataset [41], our pre-
diction of pH had accuracy improvement of 24%–35% by MEC and
18%–26% by RMSE, and the predictions of other properties (SOC,
CEC, TN, TP, TK, BD, and CF) had accuracy improvement of over
124% by MEC and 9%–28% by RMSE. Relative to the HWSD [42],
our predictions of soil properties had accuracy improvements of
over 135% by MEC and 8%–43% by RMSE. In addition, the ME values
indicate that the SoilGrids250m obviously over-estimated SOC
content while the Soil Characteristics dataset and HWSD maps
under-estimated SOC content. In addition, there were significant
differences in spatial details between our predictions and previous
soil maps. Taking soil BD at 0–5 cm depth as an example, Fig. 4
shows four BD maps excerpted from our predictions, SoilGrid-
s250m, Soil Characteristics dataset, and HWSD, respectively, in
an 85 km � 63 km window (108.51�–109.29�E and 35.42�–
35.85�N) located in northern Shaanxi Province. Our map clearly
shows BD spatial variation with local landscape patterns, and is
much more detailed than other soil maps. Thus, our predictions
better represent the spatial variation of soil properties across China
than the previous soil datasets.

4.3. Environmental controls of spatial patterns of soil properties

Relative importance of the environmental covariates used in the
soil spatial predictions is shown in Fig. 5. Although all covariates
contributed to the predictions, their importance was different for
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Table 1
Predictive performance of our soil property predictions, SoilGrids250m [15], Soil Characteristics [41] and HWSD [42] using 10-fold cross validationa).

Depth (cm) Our predictions SoilGrids250m Soil Characteristics HWSD

MEC RMSE ME MEC RMSE ME MEC RMSE ME MEC RMSE ME

pH 0–5 0.711 0.791 0.001 0.635 0.916 �0.038 0.572 0.966 �0.008 0.152 1.33 �0.179
5–15 0.724 0.767 0.003 0.652 0.893 �0.066 0.582 0.945 �0.009 0.158 1.31 �0.215
15–30 0.740 0.730 0.003 0.659 0.878 �0.141 0.567 0.953 �0.050 0.169 1.29 �0.334
30–60 0.737 0.732 0.002 0.647 0.898 �0.194 0.546 0.983 �0.111 0.211 1.25 �0.188
60–100 0.736 0.728 0.004 0.641 0.888 �0.184 0.550 0.977 �0.131 0.217 1.21 �0.245
100–200 0.741 0.720 0.006 0.643 0.879 �0.143 0.573 0.944 �0.084 0.208 1.23 �0.271

SOC 0–5 0.551 14.68 0.446 0.124 20.50 7.94 0.223 20.06 �2.268 0.061 21.25 �6.954
5–15 0.535 13.53 0.423 0.325 16.33 5.158 0.219 17.69 �2.531 0.070 19.11 �5.427
15–30 0.442 12.68 0.410 0.227 14.94 2.910 0.151 15.72 �2.159 0.082 16.30 �1.061
30–60 0.360 12.14 0.396 0.140 14.08 1.906 0.099 14.61 �2.759 0.074 14.65 �2.468
60–100 0.286 13.59 0.408 0.089 15.36 1.378 0.060 15.60 �2.479 0.084 15.41 �0.717
100–200 0.237 12.79 0.351 0.057 14.24 2.199 0.088 14.01 �1.369 0.101 13.93 0.440

TN 0–5 0.483 1.057 0.029 — — — 0.211 1.353 �0.126 — — —
5–15 0.459 1.031 0.029 — — — 0.205 1.285 �0.188 — — —
15–30 0.388 0.914 0.031 — — — 0.144 1.105 �0.137 — — —
30–60 0.352 0.813 0.028 — — — 0.089 0.982 �0.193 — — —
60–100 0.280 0.771 0.026 — — — 0.047 0.888 �0.169 — — —
100–200 0.294 0.731 0.022 — — — 0.041 0.852 �0.024 — — —

TP 0–5 0.390 0.482 0.016 — — — 0.012 0.626 �0.063 — — —
5–15 0.395 0.473 0.015 — — — 0.014 0.608 �0.063 — — —
15–30 0.413 0.475 0.011 — — — 0.020 0.61 �0.036 — — —
30–60 0.411 0.381 0.010 — — — 0.019 0.484 �0.035 — — —
60–100 0.406 0.368 0.013 — — — 0.012 0.48 �0.041 — — —
100–200 0.357 0.441 0.017 — — — 0.019 0.55 0.027 — — —

TK 0–5 0.383 5.474 0.074 — — — 0.044 6.83 0.764 — — —
5–15 0.388 5.445 0.067 — — — 0.048 6.76 0.639 — — —
15–30 0.384 5.484 0.061 — — — 0.047 6.85 0.860 — — —
30–60 0.380 5.583 0.071 — — — 0.050 6.93 1.019 — — —
60–100 0.376 5.655 0.079 — — — 0.051 7.01 0.935 — — —
100–200 0.348 5.812 0.094 — — — 0.077 6.94 0.462 — — —

CEC 0–5 0.417 8.437 0.223 0.176 10.07 2.212 0.137 10.28 �3.427 0.048 10.82 �2.957
5–15 0.426 8.046 0.213 0.176 9.68 �0.011 0.142 9.8 �3.485 0.048 10.36 �2.721
15–30 0.419 7.667 0.211 0.157 9.30 �0.487 0.144 9.31 �3.459 0.048 9.83 �2.069
30–60 0.392 7.524 0.233 0.133 9.03 �0.067 0.132 9.03 �3.640 0.064 9.32 �1.953
60–100 0.348 7.986 0.264 0.115 9.28 0.214 0.122 9.29 �3.635 0.062 9.60 �1.609
100–200 0.337 8.184 0.250 0.085 9.76 0.913 0.128 9.39 �3.883 0.080 9.63 �1.422

BD 0–5 0.483 0.147 �0.002 0.268 0.185 0.058 0.071 0.204 0.014 0.051 0.237 0.116
5–15 0.479 0.138 �0.002 0.279 0.172 0.053 0.081 0.187 0.013 0.056 0.213 0.089
15–30 0.457 0.132 �0.002 0.263 0.160 0.043 0.049 0.181 0.007 0.059 0.182 0.010
30–60 0.403 0.128 �0.002 0.193 0.158 0.050 0.041 0.166 0.003 0.032 0.174 0.013
60–100 0.303 0.126 �0.003 0.098 0.158 0.065 0.019 0.152 0.013 0.027 0.167 �0.006
100–200 0.265 0.126 �0.003 0.057 0.159 0.071 0.002 0.15 0.005 0.024 0.169 �0.019

CF 0–5 0.361 10.29 0.437 0.062 12.51 4.513 0.034 12.68 3.946 0.003 12.88 2.486
5–15 0.372 11.36 0.484 0.072 13.79 4.011 0.040 14.04 3.974 0.003 14.30 1.655
15–30 0.351 14.50 0.551 0.085 17.25 2.123 0.034 17.67 2.515 0.002 17.97 �1.105
30–60 0.331 17.62 0.593 0.112 20.30 �0.189 0.049 21.03 1.657 0.002 21.55 �4.108
60–100 0.333 19.63 0.576 0.118 22.61 �2.193 0.034 23.68 0.064 0.002 24.03 �6.931
100–200 0.224 21.05 0.900 0.086 22.85 �0.537 0.019 23.65 �3.493 0.001 23.86 �6.364

Thickness 0.485 57 0.431

a) SOC: soil organic carbon; BD: bulk density; CEC: cation exchange capacity; CF: coarse fragment content; TN: total nitrogen; TP: total phosphorus; TK: total potassium; ‘‘—”
represents the soil property not mapped or available from the datasets.
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specific soil properties and depths, suggesting the complexity and
non-stationarity of multi-factor interaction in the process of soil
development.

For pH, the most important covariate was regolith thickness.
Less important but still useful covariates were wind speed, MAP
(mean annual precipitation), solar radiation, precipitation season-
ality, elevation, and slope gradient. This may indicate that parent
materials and climate conditions mainly controlled pH spatial pat-
tern at national scale and terrain exerted its influence at local scale.
Previous studies mainly reported MAP as the most dominant factor
[44]. The climatic covariates were more important at shallow than
deep depths.

For SOC content, the most important covariates were NDVI,
solar radiation, MAP, and growing season LST, followed by MAAT
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(mean annual air temperature), Diurnal air temperature range,
wind speed, band 5, band 7, elevation, slope gradient, and TWI (to-
pographic wetness index). This indicates that bioclimatic condi-
tions mainly controlled SOC spatial pattern. Solar radiation
increased its importance with depth, but other climatic covariates
were more important at shallow depths. NDVI mean was more
important at shallow depths while NDVI standard deviation was
important at almost all depths. Few studies have recognized solar
radiation as an important predictor for SOC prediction, but many
have reported NDVI, land use, MAP, and MAAT as important pre-
dictors [12].

The importance of covariates in TN prediction was similar to
that in SOC prediction. For TP content, the most important covari-
ates were solar radiation, wind speed and precipitation seasonality,



Fig. 4. Surface (0–5 cm) bulk density (BD) maps excerpted from our predictions, SoilGrids250m, Soil Characteristics dataset and HWSD, respectively, in an 85 km � 63 km
window (108.51�–109.29�E and 35.42�–35.85�N) located in Shaanxi Province.
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followed by TWI, NDVI standard deviation, elevation, regolith
thickness, and annual air temperature range. This indicates that
climate, terrain, and land uses were dominant factors. For TK con-
tent, the most important covariates were solar radiation, diurnal/
annual air temperature range, and topographic exposure to wind,
followed by wind speed and TWI, indicating that climate and par-
ent materials were dominant factors. NDVI standard deviation,
which reflects land use and cropping pattern information, was
much more important for TN predictions, less important but useful
for TP predictions, and not important for TK predictions. This is
similar to the result of Ref. [45] in Renshou County, Sichuan
Province.

For CEC, the most important covariates were solar radiation and
NDVI standard deviation, followed by elevation, wind speed, band
3, NDVI mean, and regolith thickness. Among them, NDVI and band
3 are related to vegetation growth, land uses, and hence SOC accu-
mulation process, while others are related to weathering intensity,
erosion, deposition, and sorting process. Previous studies [46]
mostly discussed the relations of CEC with SOC, clay content, and
particle diameter.

For BD, the most important covariates were wind speed, solar
radiation, elevation, MAP, NDVI standard deviation, daytime LST
standard deviation, and June–July LST, followed by summer maxi-
mum air temperature, NDVI mean, precipitation seasonality, slope
gradient, and TWI. This indicates that evaporation-precipitation
balance, terrain, vegetation and land uses were dominant factors.
NDVI, daytime June–July LST, summer maximum air temperature,
and precipitation seasonality were more important at shallow than
deep depths. Ref. [47] reported that land use and MAAT were
important for topsoil BD prediction.
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For CF content, the most important covariate was regolith thick-
ness, which is associated with the processes of bedrock weather-
ing, erosion and deposition. Less important but still useful
covariates were topographic exposure to wind, wind speed, eleva-
tion, and slope gradient, which are related to wind, gravity, and
water erosions. This indicates that geomorphic processes were a
major controller for spatial pattern of CF content. Previous studies
[48] reported significant relationships of CF content with slope gra-
dient in local areas. For soil thickness, the most important covari-
ates were regolith thickness and solar radiation, followed by
daytime LST, band 7, wind speed, TWI, elevation, and maximum
temperature of warmest month. Compared to CF content, moisture
and thermal conditions became more important. This may indicate
that both geomorphic and pedological processes are major con-
trollers for the pattern of soil thickness.

4.4. The predicted soil spatial patterns and their local uncertainties

Fig. 6 shows the predicted maps of soil pH, SOC, TN, TP, TK, CEC,
BD, and CF at 0–5 cm depth. Figs. S2–S9 (online) show their three-
dimensional distributions. The spatial patterns of these soil proper-
ties had distinct characteristics and varied with depths, revealing
high soil heterogeneity in three-dimensional geographical space.

The pH exhibits a gradually increasing trend from southeast to
northwest. Alkaline soils (>7.0) are predicted to occur in the north-
west and north with arid climate conditions, and acid soils (<6.5) in
the south and mountains of Northeast China. Desert areas are pre-
dicted to be extremely alkaline, and mountainous and hilly areas in
southeast are predicted to be extremely acid. The pH gradually
increases with increasing depth. This is probably because the



Fig. 5. Relative importance (%IncMSE) of environmental covariates in the spatial predictions of soil pH, soil organic carbon (SOC), total nitrogen (TN), total phosphorus (TP),
total potassium (TK), cation exchange capacity (CEC), bulk density (BD), coarse fragments (CF) and soil thickness. L1, L2, L3, L4, L5 and L6 represent the depths 0–5, 5–15, 15–
30, 30–60, 60–100 and 100–200 cm, respectively.
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inputs of acid rains and nitrogen fertilizer have stronger influence
at shallow than deep depths in the south and calcium carbonates
accumulate at subsurface soils in the northwest and north.

The SOC content is predicted to be highest in the eastern
Qinghai-Tibet Plateau, Northeast China and Tianshan Mountains,
and lowest in desert areas in the northwest. There is a decreasing
trend from southeast to northwest, which is consistent with the
influence of the southeast monsoon. In eastern China, the southern
part dominated by paddy fields and forests has obviously higher
predicted SOC content than the northern part dominated by dry-
lands, especially for the depths less than 30 cm. SOC content
rapidly decreases with increasing depth in most areas. The TN con-
tent exhibits similar patterns to SOC content, but the decreasing
trend from the eastern Qinghai-Tibet Plateau to the east and south
is much more gradual.

The TP content is predicted to be low in the south but high in
other areas. Sedimentary rocks in Southwest China are rich in
phosphorus, so soils derived on these contain relatively higher
TP, while in south China soils are normally depleted with TP, as
soils are highly weathered and leached [49]. Alpine mountains
where large amount of organic matter accumulates are predicted
to have relatively high TP content. The TP content is predicted to
decrease with increasing depth in most areas, because plant roots
absorb phosphorus from subsoil and then return it to the surface in
the form of organic residues. Fertilization also increases phospho-
rus content in tillage layer, as we can see significantly higher con-
tent at shallow than deep depths in the North China Plain.
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The TK content exhibits an increasing trend from south to north,
and is predicted to be relatively high in mountainous areas. As it is
mainly associated with weatherable minerals, pedologically
younger soils normally have higher TK, while soils in tropical and
subtropical monsoon areas have lower TK. The lowest content is
predicted to occur in the three southernmost provinces (Hainan,
Guangdong, and Guangxi), while the highest content is predicted
to occur in Northeast China. TK content increases slightly with
increasing depth, probably because mineral potassium in upper
depths is easily released and leached.

The CEC exhibits an overall increasing trend from south to north
and from west to east. Alpine areas (e.g., the eastern Qinghai-Tibet
Plateau) are predicted to have relatively high CEC, mainly due to
rich organic matter accumulation. The higher CEC of central China
compared to its north and south mainly results from their differ-
ences in clay minerals. Relatively low CEC in the southeast is due
to high air temperature and rainfall, leading to strong leaching loss
of exchangeable substances. The alpine areas show faster decrease
of CEC with increasing depth than other areas, due to significant
decline of organic matter with depth.

The BD exhibits an overall decreasing trend from north to south.
The highest predicted values at 0–5 cm depth occur in the middle
part of Inner Mongolia, characterized by arid climate and low soil
organic matter content, while the lowest predicted values at the
depth occur in the eastern Qinghai-Tibet Plateau, characterized
by alpine climate and high soil organic matter content. It increases
with increasing depth.



Fig. 6. The predicted maps of soil properties. (a) pH; (b) soil organic carbon (SOC); (c) total nitrogen (TN); (d) total phosphorus (TP); (e) total potassium (TK); (f) cation
exchange capacity (CEC); (g) bulk density (BD); (h) coarse fragments (CF) at 0–5 cm depth; (i) soil thickness.
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The CF content is predicted to be high in mountainous areas
(e.g., the Qinghai-Tibet Plateau, Greater Khingan Range, and Lesser
Khingan Range) and low in plains (e.g., the North China Plain,
Northeast Plain, and Middle-Lower Yangtze Plain) and deserts.
Most areas at 0–5 and 5–15 cm layers have low predicted CF con-
tent. It increases with increasing depth especially in mountainous
areas.

Soil thickness is predicted to be biggest in the Loess Plateau and
North China Plain, followed by the Northeast China Plain, lower
Yangtze Plain and Pearl River Delta Plain, and smallest in deserts
and high mountain ridges. The soils are predicted to be much
thicker in the north than in the south, and also much thicker in
the east than in the west (Fig. 6i).

Table S5 (online) shows that all PICP values are higher than 90%,
indicating reliable uncertainty estimations for the predictions of
soil properties and depths. It was found that different soil proper-
ties had distinct spatial patterns of prediction uncertainty but dif-
ferent depths of the same property had similar patterns. Fig. S10
(online) shows maps of uncertainty for soil pH, SOC, and BD predic-
tions at depths 0–5 and 30–60 cm as an example. High prediction
uncertainty of pH occurs in Southwest China, that of SOC in eastern
Qinghai-Tibet Plateau and Greater and Lesser Khingan Ranges, and
that of BD in almost all alpine areas. Most of these areas had sparse
samples in complex soil landscapes.
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4.5. Insights for soil prediction over large and complex areas

Large and complex areas are generally characterized by strong
multi-factor interaction, nonlinearity, and nonstationary, leading
to highly heterogeneous soils over space. Through this study, we
recognized several important aspects of this relevant for making
accurate and detailed soil prediction in such areas.

First, the predictive algorithm should be flexible and robust.
Here ‘‘flexibility” means that the algorithm can model local soil-
environment relationships, while ‘‘robustness” means that it can
give reasonable predictions for new situations, even in the absence
of sufficient information. Ensemble learning has been demon-
strated to be helpful for improving robustness. Recent studies
report that complex algorithms yield better predictive perfor-
mance than simple ones [50]. However, according to the Occam’s
razor principle, one should not make a model more complex than
necessary. It should be noted that highly complex models generally
need large number of training data and can be sensitive to
overfitting.

Second, environmental covariates play a critical role in being
able to reveal soil spatial variation with a limited number of soil
samples. Considering the diversity of soil landscapes in such areas,
it would be better to characterize soil-forming environments from
various angles, for example, remote sensing from visible, near
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infrared and shortwave infrared bands. Detailed covariates can
more adequately represent environmental conditions and thus
may lead to more accurate predictions [51]. But, there are studies
showing an opposite view that the performance of soil prediction
models may be improved if covariates are aggregated to larger sup-
ports before they are used in the models [52]. This issue would be
an interesting point for future research.

Finally, the estimation of spatial uncertainty of soil predictions
is important in such areas. It can inform us of the reliability of soil
predictions, especially for local areas with high heterogeneity or a
lack of samples. This information is valuable for end-users to make
an enlightened decision in applications of the predicted soil maps
[20,53]. But, it should be acknowledged that the presentation and
use of uncertainty maps is a field that still needs to be developed.
4.6. Limitations and further improvement

Our soil survey samples are sparse over space, especially in the
western China. The on-going second Qinghai-Tibet Plateau soil sur-
vey will increase the number of soil samples in the west. Adding
more samples may improve the mapping, but it would be better
to add more samples in the feature space with high uncertainty
than in the geographic space with high uncertainty.

Soil formation is a long process. The environmental covariates
in this study mainly characterized current soil-forming environ-
mental conditions, which in many cases are different from the his-
torical environmental conditions under which pedogenesis really
took place [54]. Moreover, current covariates may not adequately
characterize the factors that shape soil spatial patterns at deep
depths. It is an important issue to identify new covariates which
can reflect historical process and soil differences.

Soil formation is a complex process. The ensemble tree-based
model in this study is just an empirical simplification of soil forma-
tion mechanism. It may only partly and implicitly model the inter-
action and comprehensive effects of soil-forming factors.
Moreover, machine learning is data-driven and depends com-
pletely on the data it has to make prediction, leading to a risk of
generating unrealistic results in areas without samples in geo-
graphic and/or feature spaces. Knowledge based on the experience
of soil survey experts could be a useful complement for the data-
driven method. It would be an interesting topic to explore their
integration in the future. In addition, it is necessary to develop
new predictive mapping strategies to deal with the imbalance of
samples distribution in geographic and feature spaces.

Applying standard cross-validation for which hyperparameters
have been optimized using the same data may yield over-
optimistic validation results. Ref. [55] argued that standard cross-
validation does not suffice for adequate model evaluation and pre-
sented a nested cross-validation method. Also, it should be noted
that the standardization of horizon data using the spline fittings
was not error-free, but due to the lack of a ‘‘true” depth function
(vertically intensive samples) of each soil profile, the standardiza-
tion error could not be quantitatively estimated and taken into
account.
4.7. Potential applications of high resolution National Soil Information
Grids

The high resolution soil property maps developed in this study
may find their wide applications in soil, agriculture, hydrology,
ecology, climate, environment and forensic science. There are sev-
eral major aspects.

First, soil monitoring and management. Our dataset can serve as
a baseline against which to assess soil spatiotemporal changes and
identify the underlying driving factors. It provides strong support
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for national and regional soil resource management and strategic
decision-making.

Second, soil function and threat assessment. With our dataset,
soil functions (e.g., nutrient storage, water infiltration, productiv-
ity, biodiversity) and threats (e.g., organic matter decline, acidifica-
tion, erosion, pollution) can be quantitatively assessed in a spatial
and detailed way to ensure a secured and healthy soil in the future.

Third, land surface processes modelling. The lack of detailed and
accurate soil information has long been a bottleneck in the mod-
elling of land surface processes. Our dataset is promising to fix
the problem and improve the modelling of processes of carbon,
water and energy in the Earth surface system.

Fourth, forensic investigation. Soil samples collected from sus-
pects’ clothing, footwear and vehicles have been considered as a
kind of evidence in forensics. Identifying their places of origin,
i.e., soil provenance, has been restricted by the lack of detailed soil
spatial information. In this regard, our dataset can provide valuable
support.

Fifth, civil engineering. Our dataset is useful for underground
pipeline planning and road construction. Soil corrosivity, which is
associated with soil pH, is an important concern in the planning
of pipeline paths. Spatial distributions of soil physical properties
are basic information for highway and railway constructions.

5. Conclusions

This study developed the first version of high resolution
National Soil Information Grids of China with limited samples from
a recent national soil survey, as an alternative to the existing out-
of-date, spatially-coarse national soil maps. It was achieved in such
a large area with complex soil landscapes through integrating pre-
dictive soil mapping paradigm with adaptive depth function fit-
ting, quantile regression forest machine learning and detailed
soil-forming environmental characterization in a high-
performance parallel computing environment. It consists of 90 m
resolution national gridded maps of a set of key soil properties at
multiple depths, which clearly show regional patterns as well as
substantial local details. Compared to previous soil map datasets,
it is significantly more accurate and detailed and includes local
uncertainty information, and can well represent soil spatial varia-
tions across the territory. The gridded soil property maps are a con-
tribution to the GlobalSoilMap.net project, which can serve wide
applications in soil management, agriculture production, hydrolog-
ical modeling, ecological construction and climate change
mitigation.

We also found that although all soil-forming factors contributed
to the shaping of soil spatial patterns, their relative importance
varies with specific soil properties and depths. This suggests the
complexity and non-stationarity of comprehensive multi-factor
interaction in the process of soil development at a national extent.
The finding provides an insight for soil evolution modelling and
decision making to ensure sustainable development in the future.
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