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The complexity of the Himalayan-Tibetan lithospheric deformation is evident from widespread seismicity and
diverse focal mechanism solutions. Here we investigate the focal depths and fault plane solutions of 97 moderate
and shallow earthquakes in the Himalayan-Tibetan region by modeling teleseismic P-wave and its tailing surface
reflections pP and sP. Earthquakes in central Tibet are restricted to the upper crust and originate dominantly by
strike-slip faulting, in agreement with the low P-wave velocity layers in the lower crust and the strong S-wave
attenuation zones in the uppermost mantle. In northern and southern Tibet, where the Asian and Indian plates
descend beneath central Tibet, earthquakes appear to be distributed throughout the thickness of the crust and
exhibit dominantly reverse faulting. We incorporate well-estimated focal depths of 127 additional earthquakes
from previous studies to estimate the seismogenic thickness (Ts) of the study region. The resulting pattern of
Ts is found to be rather flat for central and northeastern Tibet and highly variable along the strike of the Himala-
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1. Introduction

The collision between the Indian and Eurasian Plates followed by the
subduction and closure of the Neo-Tethys Ocean formed the Himalayas
and the Tibetan plateau, the world's largest orogenic belt and highest
plateau (Fig. 1). The elevation of the Tibetan plateau exceeds 5 km with-
in an area of 2,500,000 km? (Amante and Eakins, 2009). Its crust is 50—
80 km thick, nearly twice as much as the average Moho depth of the
world (Shin et al., 2009). From north to south the Kunlun, Songpan-
Ganze, Qiangtang, and Lhasa terranes exemplify the remarkable hori-
zontal inhomogeneity of the plateau (Yin and Harrison, 2000).

The United States Geological Survey (USGS) earthquake catalog
includes about 1500 shallow (H < 50 km) earthquakes and 700
intermediate-depth (50 < H < 300 km) earthquakes with My, > 5.0 from
the past 50 years (Fig. 2). Since 1900, 8 earthquakes of My, > 8.0 and 52
earthquakes of 7.0 < My < 8.0 have occurred (Hatzfeld and Molnar,
2010). The whole region of the plateau accommodates shallow earth-
quakes, while intermediate-depth seismicity is concentrated at the
Indo-Burma and Pamir-Hindu Kush subduction zones, which are located
at the eastern and western Himalayan syntaxes, respectively. The diversi-
ty of focal mechanism solutions for both shallow and intermediate-depth
earthquakes indicates intricacy of the current stress field beneath the
Himalayan-Tibetan region.
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The significant differences between earthquake catalogs illustrate
that the routine measurements of earthquake source parameters are
highly uncertain, especially for shallow earthquakes (Fig. 3). The catalog
from China Earthquake Network Center (CENC) relies on arrival times of
regional seismic network which provides a good constraint on focal
depths for earthquakes within the network. However, differences in
depth estimates for nearly 15% of earthquakes are larger than 20 km
due to scarce station coverage and complex velocity structure in the
Himalayan-Tibetan region (Fig. 3(a1)). The USGS preliminary determi-
nation of epicenters (PDE) provides earthquake catalog based on arrival
times of teleseismic body waves. This catalog is as much accurate as that
of CENC catalog because the combination of later phases improves the
accuracy of the earthquake locations (Fig. 3(b1)). The global Centroid
Moment Tensor (gCMT) locations are updated USGS PDE locations
using low-pass-filtered long-period waveforms (Ekstrom et al., 2012)
(Fig. 3(c1)). The EHB catalog provides the best depth estimates based
on various teleseismic arrival times for earthquakes up to the end of
2008 (Engdahl et al., 1998). Focal depths are better constrained by
modeling the broadband waveforms as the depth phases are easily
distinguishable than in long-period records.

Location accuracy of focal depths directly affects our understanding
about the physical mechanism of the seismicity and the deep structure
of the Earth. The controversy on the lower crustal or upper mantle
earthquakes beneath the Himalayan region comes from the measure-
ment uncertainty of the earthquake location and the crustal thickness
(Chen and Yang, 2004; Jackson et al., 2008). A detailed investigation of
the crustal flow layer, which is distinguished from the seismogenic
zone, requires accurate knowledge of the earthquake location

1342-937X/© 2015 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.
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Fig. 1. Tectonic map of the Himalayan-Tibetan region. Red and black lines are plate and terrane boundaries, respectively.

(Klemperer, 2006). Similarly, understanding the structure of subducted using teleseismic P-wave modeling. These 97 events account for more
slab requires constrains from earthquake location and focal mechanism than 95% of moderate earthquakes (5.4 < My < 7.0) occurred since
solutions (Bai and Zhang, 2015). 1990. These events occurred at different regions hence suitable for pro-

In this paper, we estimate focal depths and focal mechanism solu- viding constrains for various tectonic implications. The manifold impli-
tions of 97 shallow earthquakes in the Himalayan-Tibetan region cations of this study would provide new constrains on the deep

Longitude/’

Fig. 2. Distribution of earthquakes of Mw 2 5.0 that occurred in the past 50 years. Gray and black circles show shallow and intermediate-depth earthquakes, respectively. The depth scales
in cross-sections are twice of the actual size.
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Fig. 3. Comparison of focal depths between different catalogs. (a1)-(d1) show depth dif-
ferences of shallow earthquakes between those obtained in this study and those listed in
CENC, USGS PDE, gCMT, and EHB catalogs. (a2)-(d2) show depth differences of interme-
diate-depth earthquakes between those obtained in Bai and Zhang (2015) and listed in
above catalogs.

structures of the Earth beneath the Himalayan-Tibetan region in more
detail.

2. Waveform data and modeling

We collected data for all earthquakes in the Himalayan-Tibetan re-
gion with waveforms available at the Incorporated Research Institutions
for Seismology (IRIS) Data Management Centre. We examined vertical-
component recordings from stations at epicentral distances between
30° and 90° (Fig. 4) in order to avoid interference from core phases
and upper mantle triplications. We acquired the earthquakes with rela-
tively simple source time functions but sufficiently high signal-to-noise
ratios. Waveforms are band-pass-filtered from 0.03 to 1 Hz and
deconvolved from the station response.

We employed teleseismic waveform inversion methods developed
by Kikuchi and Kanamori (1982), which involve matching of complete
P waveforms to synthetic waveforms. This procedure assumes that the
source can be represented as a point (the centroid) in space and a series
of overlapping triangles in time. We calculate synthetic waveforms
using four-layer velocity and density model for the upper, middle,
lower crust and mantle structures along with variable Moho depth of
35-80 km based on CRUST2.0 (Bassin et al., 2000), except for the struc-
tures that have been imaged in more detail through seismic experi-
ments (Maggi et al., 2000; Mejia, 2001; Rai et al., 2006). Amplitudes
are corrected for geometrical spreading using attenuation t* operator
with a value of 1.0 s. As the reflection points of pP and sP phases are lo-
cated on the surface of the Earth, the topography is corrected in order to
obtain focal depths relative to the sea level.

Based on our experiment on the velocity structure, we found that
source depth estimates are primarily controlled by the pP-P and sP-P

Fig. 4. Distribution of earthquakes (blue circles) and stations (red triangles) used in the study.
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times, hence the average wave velocity in the source region. The typical
values of crustal Vp and Vs range between 6.2 to 6.6 km/s and between
3.5 to 3.9 kmy/s. If the velocity reduces by 5% and the thickness of the
crust increases by 5 km (Kennett et al., 1995; Mejia, 2001), the focal
depth will move up by 2 km. There are some additional errors in arrival
time readings and gCMT solutions. We infer that the uncertainties in
focal depth determination are predominately within 43 km.

Fig. 5 shows two examples of seismic waveform modeling. Event S7
is a normal-faulting earthquake that occurred in the Lhasa terrane. The
focal depth estimated from waveform modeling is 9 km. Corrections of
5 km for the topography give the focal depth of 4 km (Fig. 5(a)). Event
S8 is a reverse-faulting earthquake with a strike-slip component. The
final depth calculated is 40 km, which is 25 km deeper than the depth
listed in the gCMT catalog (Fig. 5(b)).

3. Results

The focal depths and source parameters of 97 earthquakes investigat-
ed are given in Table 1 and Fig. 6. The focal depths of these earthquakes
range from 2 to 49 km. All the earthquakes with focal depths greater
than 20 km are located at the margin of the plateau. There is shortening
in the north, shearing in the center, and underthrusting in the south,
representing the Asian, Indian, and Tibetan lithospheric mantle, respec-
tively. Therefore, we divide the study area into several different sub-

regions: northern Tibet, central Tibet, southern Tibet, and eastern and
western Himalayan syntaxes.

3.1. Northern Tibet

Northern Tibet is defined as the region north of the Kunlun Suture
and its western extension, including the Kunlun terrane, Tarim Basin,
and Tien Shan mountain belt (Fig. 7). The Asian lithospheric mantle
underplates southward beneath the northern Tibetan plateau with in-
creasing angles from east to west (Willett and Beaumont, 1994; Kind
et al., 2002; Schneider et al., 2013). The descending fronts marked by
different studies vary. Nevertheless, it reaches far beneath the Kunlun
Suture (blue region in Fig. 6; Zhao et al., 2010; Zhang et al., 2011).
Fault plane solutions of most earthquakes indicate thrust faulting,
distinguishing northern Tibet from central Tibet.

The Kunlun terrane is bounded by large-scale left-lateral strike-slip
faults, the Altyn-Tagh fault to the northwest, Haiyuan fault to the north-
east, and Kunlun fault to the south (Peltzer et al., 1989). However, thrust-
faulting earthquakes are typical characteristic of Kunlun terrane. Tarim
and Qaidam Basins occupy a major portion of the region so that the
crust below northern Tibet is rather old and tough. The Moho depths be-
neath northern Tibet range from 50 to 60 km. Most earthquakes in this re-
gion are shallower than 30 km and thus located in the upper or middle
crust.

(a) Event S7 (July 03, 1996 06:44)
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Fig. 5. Two examples of waveform modeling. The waveforms are (from top to bottom) the raw data, the synthetics at the preferred depth, and the synthetics at the depth listed in the gCMT
catalog. The numbers in parentheses following the depth are least-squares misfit between observed and synthetic seismograms (see Bai et al., 2014 for the identification of the depth

phases).
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Table 1

Source parameters of 97 earthquakes obtained from teleseismic waveform modeling.
ID Date yyyy-mm-dd Time (GMT) N YN H My Fault plane Misfit Moho

hh:mm /° /° /km Strike/Dip/Rake /km

Northern Tibet
N1 1993-10-02 08:42 88.66 38.17 11 6.1 326/42/146 0.28 50
N2 1997-04-05 23:46 76.88 39.54 18 5.9 161/78/(—172) 0.49 55
N3 1997-04-06 04:36 77.00 39.54 15 5.9 253/43/—36 0.31 55
N4 1997-04-11 05:34 76.95 39.56 17 6.1 240/37/(—82) 0.31 55
N5 1997-04-15 18:19 76.98 39.62 18 5.8 170/66/—162 0.42 55
N6 1998-03-19 13:51 76.73 39.92 26 5.6 243/23/(67) 0.64 55
N7 1998-05-28 21:11 78.87 37.39 14 5.6 95/9/63 0.52 53
N8 1998-08-02 04:40 77.03 39.57 16 5.6 231/30/(—91) 0.29 55
N9 1998-08-27 09:03 77.34 39.58 32 6.3 240/78/(—44) 0.53 55
N10 2000-09-12 00:27 99.37 35.37 6 6.1 343/80/—170 0.56 60
N11 2003-02-24 02:03 77.23 39.61 30 5.7 239/33/69 0.50 55
N12 2003-03-12 04:47 77.43 39.36 12 54 245/33/79 0.42 55
N13 2003-04-17 00:48 96.48 37.53 9 6.2 294/29/91 0.35 60
N14 2003-09-01 23:16 75.32 38.60 4 5.7 107/47/—153 0.60 60
N15 2008-11-10 01:22 95.83 37.56 17 6.0 252/28/63 0.58 60
N16 2009-08-28 01:52 95.68 37.72 11 6.1 295/31/95 0.27 60
N17 2012-03-08 22:50 81.31 39.38 45 59 132/46/128 0.45 53
Central Tibet
C1 1994-06-29 18:22 93.69 32.56 4 59 9/40/—105 0.20 75
2 1996-11-19 10:44 78.20 3531 14 6.8 180/71/170 0.51 65
3 1997-11-08 10:02 87.37 35.12 10 7.5 348/88/(—168) 0.58 65
Cc4 2001-03-05 05:50 86.90 34.37 13 5.6 170/64/—153 0.52 65
5 2003-07-07 06:55 89.47 34.61 15 5.7 60/81/6 0.53 70
6 2004-03-27 18:47 89.18 33.95 7 5.9 187/44/—78 0.47 75
Cc7 2007-05-05 08:51 81.97 34.25 4 6.1 220/88/—36 0.64 65
Cc8 2008-01-09 08:26 85.17 32.29 8 6.3 206/46/—78 0.19 75
9 2008-01-16 11:54 85.16 3233 6 5.8 23/44/—102 0.46 75
C10 2010-03-24 02:06 92.70 32.50 8 5.6 162/74/—108 0.47 75
C11 2010-04-13 23:49 96.63 33.27 10 6.7 210/67/—164 0.35 70
C12 2010-05-29 02:30 96.25 33.25 20 5.6 75/88/11 0.69 70
C13 2012-08-12 10:47 82.52 35.67 12 6.2 215/47/—52 0.32 65
C14 2013-08-11 21:23 97.96 30.05 2 5.8 90/54/—40 0.42 65
C15 2013-08-31 00:04 99.35 28.24 4 5.7 97/42/—95 0.40 55
C16 2014-02-12 09:19 82.59 35.91 6 6.9 332/85/(—161) 0.55 65
Southern Tibet
S1 1991-11-08 15:13 70.66 26.38 26 54 56/43/46 0.69 35
S2 1992-05-20 12:20 71.33 33.36 12 6.0 237/5/79 0.25 46
S3 1992-07-30 08:24 90.18 29.57 7 6.1 10/42/—94 0.32 70
S4 1993-01-18 12:42 90.38 30.84 5 59 25/48/—57 0.25 75
S5 1993-03-20 14:51 87.33 29.03 16 6.2 161/46/—121 0.50 70
S6 1996-04-01 08:08 73.46 31.46 40 52 98/33/101 0.76 50
S7 1996-07-03 06:44 88.19 30.11 4 5.6 172/45/—102 0.21 75
S8 1997-02-27 21:08 68.20 29.96 40 7.1 85/77/82 0.29 41
S9 1997-03-20 08:50 68.02 30.13 21 5.9 76/7/—91 0.47 41
S10 1997-05-08 02:53 92.28 24.89 36 5.9 347/86/(—167) 0.54 41
S11 1997-05-21 22:51 80.04 23.08 38 5.8 283/26/129 0.36 43
S12 1998-07-20 01:06 88.25 30.18 17 5.7 16/32/—83 0.54 75
S13 1998-08-25 07:41 88.16 30.27 20 5.8 14/46/—67 0.62 75
S14 1999-02-11 14:08 69.24 34.31 18 6.0 194/66/(—30) 0.66 38
S15 1999-03-28 19:05 79.42 30.51 16 6.5 280/7/75 0.57 70
S16 1999-06-26 21:54 69.45 30.05 15 55 18/47/41 0.62 60
S17 1999-07-12 03:42 69.46 29.99 19 5.6 269/60/152 0.53 41
S18 2001-01-28 01:02 70.52 23,51 14 5.7 286/43/100 0.24 35
S19 2002-07-13 20:06 69.98 30.80 30 55 171/66/18 0.42 41
S20 2004-07-11 23:08 83.67 30.69 4 6.3 359/45/—96 0.48 75
S21 2005-04-07 20:04 83.66 30.49 6 6.3 170/43/—67 0.25 75
S22 2005-06-01 20:06 94.63 28.88 19 5.6 209/6/28 0.34 65
S23 2005-10-08 10:46 73.10 34.73 8 6.1 328/39/77 0.46 60
S24 2005-10-08 12:25 73.12 34.77 3 59 96/47/39 0.85 60
S25 2005-10-09 08:30 73.18 34.67 6 5.7 344/37/122 0.27 60
S26 2008-08-25 13:21 83.52 30.90 14 6.3 30/48/—93 0.59 75
S27 2008-09-25 01:47 83.47 30.83 14 5.6 208/75/12 0.81 75
S28 2008-10-05 22:56 69.47 33.89 31 5.8 218/80/10 0.40 41
S29 2008-10-06 08:30 90.35 29.81 4 6.3 44/48/—175 0.30 70
S30 2009-07-24 03:11 85.86 31.12 20 54 318/74/170 0.67 75
S31 2009-09-21 08:53 91.42 27.35 13 6.0 281/6/99 0.52 65
S32 2011-09-18 12:40 88.15 27.80 49 6.9 216/72/(—8) 0.34 60
S33 2013-04-24 09:25 70.22 34.53 37 55 200/46/153 0.75 43
S34 2013-05-01 06:57 75.84 33.10 16 5.6 328/23/113 0.34 60
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Table 1 (continued)
ID Date yyyy-mm-dd Time (GMT) Ne Un H Mw Fault plane Misfit Moho
hh:mm /° /° /km Strike/Dip/Rake /km

Western syntaxis

W1 1992-05-10 04:04 72.93 3717 5 5.8 186/45/—55 0.68 60
W2 1998-05-30 06:22 70.12 37.15 19 6.5 291/83/(179) 0.75 50
w3 2002-03-25 14:56 69.32 36.06 5 5.9 16/39/98 038 41
w4 2002-04-12 04:00 69.42 35.96 5 5.7 204/46/96 0.46 38
W5 2002-11-20 21:32 74.51 35.41 6 6.0 204/30/—-91 0.54 65
W6 2004-11-17 20:58 71.86 39.19 6 5.8 185/88/11 0.65 50
W7 2006-07-06 03:57 71.82 39.13 5 58 285/59/145 0.52 50
W8 2007-01-08 17:21 70.31 39.80 9 6.1 187/65/16 0.40 50
W9 2008-10-05 15:52 73.82 39.53 4 6.4 246/38/102 0.35 60
W10 2012-03-12 06:06 73.15 36.74 6 5.7 212/53/(—5) 0.63 60
W11 2012-05-12 23:28 70.35 38.61 12 5.7 62/34/139 0.49 50
W12 2012-06-11 05:29 69.35 36.02 16 5.7 329/71/17 0.69 41
Eastern syntaxis

E1l 1992-04-23 14:18 98.93 2243 9 6.1 354/77/—168 0.39 39
E2 1992-04-23 15:32 98.88 2243 5 6.1 345/68/—173 0.61 39
E3 1992-06-15 02:48 95.97 24.00 15 6.3 8/69/—173 0.25 45
E4 1994-01-11 00:51 97.21 25.21 10 6.1 106/25/—85 0.60 43
E5 1994-04-06 07:03 96.84 26.16 11 5.8 96/57/26 0.55 55
E6 1994-05-29 14:11 94.18 20.54 12 6.5 316/86/—122 0.77 44
E7 1994-11-21 08:16 96.67 25.54 10 5.9 34/76/179 0.55 43
E8 1995-07-09 20:31 99.17 21.99 5 5.9 64/66/(—20) 0.58 45
E9 1995-07-11 21:46 99.20 21.98 20 6.8 330/89/(—164) 0.42 45
E10 1997-12-30 13:43 96.59 25.40 17 5.7 122/84/(—4) 0.68 43
E11 2000-06-07 21:46 97.19 26.80 13 6.3 290/38/41 0.52 55
E12 2008-08-21 12:24 97.68 25.04 9 5.9 7/80/173 0.40 43
E13 2012-11-11 10:54 95.83 22.72 5 59 91/75/14 0.49 43
E14 2012-11-11 18:19 95.87 2313 28 5.6 358/71/167 0.61 43
E15 2013-09-20 12:24 95.96 2293 10 5.7 95/74/(—2) 0.46 43
E16 2014-05-23 20:49 97.84 2497 17 5.7 334/85/(—165) 0.70 43
E17 2014-05-30 01:20 97.85 25.00 7 59 82/79/(—8) 0.42 43
E18 2014-11-20 18:14 93.52 23.52 50 5.7 157/56/—150 0.58 41

ID is the number of earthquake in origin time order in each region. The date and origin time are GMT time. The epicenter (N\g, and ¥n), moment magnitude (M), strike and dip of the fault
plane are taken from the gCMT catalog. The rake of the fault plane is either from the gCMT or from this study (shown in the parentheses) if the station coverage is good and the gCMT value
is more than 10° different from this study. Misfit is least-square variance between observed and synthetic seismograms.

The event N17 in the Tarim basin presents an exception in that it
originated in the lower crust. The relocated focal depth for this event
is 46 km, which is only ca. 7 km above the Moho. As old basins are

Indian Plate

r’f"
O s
@) ‘3{&\@ W Asian Plate

stable and earthquakes are rare (Sloan et al., 2011), we can hypoth-
esize generation or reactivation of the fault because of the ongoing
collision.

Fig. 6. Focal depths and focal mechanisms of shallow earthquakes obtained from waveform modeling. The black, red, and green beach balls are thrust, normal, and strike-slip faulting earth-
quakes, respectively. Gray beach balls are those taken from the gCMT catalog. The background marked by the blue, pink, and green show locations of the Asian, Tibetan, and Indian lith-
ospheres, respectively.



396 L. Bai et al. / Gondwana Research 41 (2017) 390-399

75° 80° 85° 90° 95° 100°

Fig. 7. Focal depths and mechanisms for earthquakes in northern Tibet. The black, red, and
green beach balls are thrust, normal, and strike-slip faulting earthquakes, respectively. The
numbers beside them are the corresponding focal depths.

3.2. Central Tibet

Central Tibet is defined as the region between the Bangong-Nujiang
and Kunlun Sutures, including Songpan-Ganzi and Qiangtang terranes
(Fig. 8). This region is primarily composed of Tibetan lithosphere,
which behaves like a deformable crush zone between the colliding
plates (pink region in Fig. 6; Zhao et al., 2010). The dominant mode of
crustal deformation in this region is pure shear thickening.

Crustal flow has been proposed as a mechanism for the southeast-
ward extrusion of the plateau (Solid arrows in Fig. 8; Royden et al.,
1997; Beaumont et al., 2004; Klemperer, 2006). This model was origi-
nally established on the basis of numerical simulation and later con-
firmed by the geophysical observations of low-velocity and high-
conductivity layers (Yuan et al.,, 1997; Bai et al., 2010; Yang et al.,
2012). The lithosphere is warm and weak marked as strong attenuation
of Sn wave traveling in the uppermost mantle and large seismic anisot-
ropy (dotted line in Fig. 8; McNamara et al., 1997; Soto et al., 2012;
Searle, 2013; Zhang et al,, 2015). Cenozoic high potassic volcanic rocks
and lower crustal xenoliths are rich in the middle and lower crust at
depths of 30-50 km (Hacker et al., 2000; Tilmann et al., 2003), suggest-
ing partial melting in the lower crust caused by the elevated tempera-
ture as a result of the plate convergence.

In agreement with previous observations, we found no earthquakes
located in the lower crust. The relocated focal depths for 17 earthquakes
range between 2 and 20 km. They are most likely concentrated within
the upper layer of the crust because the Moho in this region ranges be-
tween 65 and 80 km. The lower crust beneath central Tibet does not
seem cold enough to allow the seismogenic zone to extend to such
depths.

75° 80° 85° 90’ 95° 100°

Fig. 8. Focal depths and mechanisms for earthquakes in central Tibet. The solid arrows rep-
resent the direction and the strength of lower crustal flow (Klemperer, 2006; Cao et al.,
2013). The black dashed line indicates the strong Sn wave attenuation zone (McNamara
etal, 1997).

3.3. Southern Tibet

This region represents the area south of Bangong-Nujiang Suture, in-
cluding the Lhasa terrane, Himalayas, and northern part of the Indian
shield (Fig. 9). Its tectonics is primarily controlled by the descending pro-
cess of the Indian plate beneath southern Tibet (green area in Fig. 6). The
northward subduction of the Indian plate reaches up to 200 km beneath
Tibet, with a front located beneath the Bangong-Nujiang Suture (Kosarev
et al,, 1999; Xu et al,, 2015).

Although earthquakes certainly occur in the oceanic mantle, earth-
quakes in the continental lithospheric mantle are known to be rare
(Chen and Yang, 2004; Priestley et al., 2008). Several earthquakes we
studied are deeper than 35 km (No. S6, S8, S11, and S32). The deepest
one is a strike-slip earthquake, which is located in the northwest of
Himalayan main boundary thrust (No. S32). Its focal depth is 49 km,
which is ca. 10 km shallower than the average value of the mantle
depth estimated by wide-angle reflection and refraction studies
(Jackson et al., 2008). All these earthquakes are likely to be located in
the lower crust of the subducted Indian plate because there might be
hydrous materials at temperatures less than 600 °C (Jackson et al.,
2008; Priestley et al., 2008; Craig et al., 2012).

Whether the crustal flow exists beneath the E-W trending central
Himalaya or not is still controversial (Beaumont et al., 2004; Copley
et al.,, 2011). The topography in southern Tibet and Himalayas is great,
leading to different crustal structures from those in central Tibet. Most
earthquakes in this region are shallower than 20 km and one earthquake
is located at 49 km (No. S32). We infer that if the crustal flow exists, it
takes place at the greater depths within the overriding Tibetan crust.

3.4. Pamir-Hindu Kush and Indo-Burma deep subduction zones

The Pamir-Hindu Kush is also called western Himalayan syntaxis,
which consists of Pamir to the north, Hindu-Kush to the west, and
Karakoram Fault to the east (upper left corner in Fig. 6). This region is
characterized by extreme shortening of the upper crust and strong in-
teraction of various layers of lithosphere. It is by far the most active re-
gion of intermediate-depth seismicity in the world not obviously
associated with oceanic subduction (Pegler and Das, 1998; Bai and
Zhang, 2015). The crustal shortening caused by the northward com-
pression of the Pamir occurs mainly along the Main Pamir Thrust, par-
tially consuming a portion of energy of Indian and Asian plate
convergence (Reigber et al., 2001; Mohadjer et al., 2010; Zubovich
et al., 2010; Ischuk, 2011; Ischuk et al., 2013; Sui et al., 2015). Many
shallow earthquakes occurred at the Main Pamir Thrust at focal depths
of 4-19 km, while intermediate-deep earthquakes are mostly located at
the Hindu-Kush below 75 km.

The Indo-Burma region is located south of the eastern Himalayan
syntaxis, where the strike of the plate boundary suddenly changes from
nearly E-W at the Himalayas to nearly NS at the Burma Arc (lower right
corner in Fig. 6; Reddy et al., 2009; Zhang et al., 2012). The largest earth-
quake of the region ever recorded by China in the recording history is the
Assam-Tibet earthquake of Mw = 8.6 on August 15, 1950 (Khattri and
Wyss, 1987). The Burma arc subduction zone is a typical oblique plate
convergence zone (Chen and Molnar, 1990; Satyabala, 2003), the eastern
boundary is the north-south striking dextral Sagaing fault, which hosts
many of the shallow earthquakes. The focal depths are less than 22 km.
In contrast, focal mechanisms of the intermediate-depth earthquakes
along the subduction zone reflect east-west trending reverse faulting
(Chen and Molnar, 1990; Satyabala, 2003).

4. Discussion and conclusions

The Tibetan plateau is one of the most active regions of continental
earthquakes in the world. Shallow seismicity is widespread over the
plateau, while intermediate-depth earthquakes are dominant in the
eastern and western Himalayan syntaxes. Published catalog locations
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Fig. 9. Focal depths and mechanisms for earthquakes in southern Tibet. Numbers with red background show Moho depth imaged by seismic refraction or wide-angle reflection data.

indicate a random distribution of shallow events, inconsistent with the
proposed tectonic models for the evolution history of the Tibetan pla-
teau. A detailed investigation of moderate-sized earthquakes using
waveform modeling indicates that only a few events are actually deeper
than 20 km and all of them are located near the edges of the plateau.
All the 97 earthquakes studied are located within the crust. Howev-
er, the variation patterns of focal depths and mechanisms are not exact-
ly consistent with the horizontal inhomogeneity marked by different
terranes. Some of the sutures which separate each terrane are no longer
active and have been reconstructed by the plate collision and subduc-
tion. The Asian plate passively subducts beneath northern Tibet,
where thrust-faulting earthquakes are dominant. These earthquakes oc-
curred at the lower crust of the Tarim Basin and at the upper and middle
crust at the margins of the Tarim Basin. In central Tibet, which is primar-
ily underlain by the Tibetan lithosphere, earthquakes are typically
strike-slip and mostly located within the upper crust, in agreement
with the low-velocity layers and strong Sn attenuation zones observed
previously at the lower crust. Earthquakes occurred beneath the
Himalaya tend to be as deep as 40-50 km, consistent with the idea of

70°

geothermal gradient reversal caused by deep subduction of the Indian
plate (Shi and Zhu, 1993).

Nearly 40% of earthquakes with waveforms available on the IRIS
DMC are intermediate-depth earthquakes, which are all located at the
eastern and western Himalayan syntaxes. The issue of intermediate-
depth earthquakes has been discussed in a separate study (Bai and
Zhang, 2015). In brief, the intermediate-depth earthquakes in the
Pamir-Hindu Kush and Indo-Burma regions reflect the ongoing defor-
mation along the plate interface. The continental slab beneath the
Indian-Eurasian collision zone deforms in a more complex manner
than the oceanic slab subduction, combining tension, shearing, and
oblique convergence with plate subduction.

To better constrain the seismogenic thickness (Ts) of the study re-
gion, we have incorporated focal depths of an additional 127 moderate
earthquakes into this study. These 127 earthquakes have either oc-
curred before 1990 (Molnar and Chen, 1983; Baranowski et al., 1984;
Molnar and Lyon-Caen, 1989; Chung, 1993; Fan et al., 1994; Chen and
Yang, 2004; Monsalve et al., 2006; Sloan et al., 2011), in the surround-
ings of the study region (Nelson et al., 1987; Sloan et al., 2011), or
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Fig. 10. Seismogenic thickness estimated based on relocated focal depths of 224 moderate earthquakes from this study (black circles) and from previous studies (black triangles).
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after 1990 with waveforms unavailable on the IRIS website (Cotton
et al,, 1996; Ghose et al., 1998; Mitra et al., 2005; Sloan et al., 2011;
Craig et al., 2012). The pattern of Ts (Fig. 10) is plotted using GMT sur-
face (Wessel and Smith, 1995), based on a modified standard minimum
curvature algorithm. A 0.1° radius has been used for sampling and
gridding in order to eliminate large variations. The Ts is particularly
high for southern Tibet and the southeastern Tarim Basin compared to
that of the typical values for central and northeastern Tibet. For central
Tibet, the observed Ts is consistent with the effective elastic thickness
(Te) (Jordan and watts, 2005) and both the Ts and Te are less than
20 km. The Ts and Te are not comparable for southern Tibet because of
multiple elastic layers beneath the area. The Ts is found to be highly var-
iable along the strike of the Himalayan foreland, especially around cen-
tral and eastern portion, where the 2015 My7.8 Gorkha, Nepal,
earthquake occurred.
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