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Abstract. We describe and validate an improved endmember extraction method to improve the
fractional snow-cover mapping based on the algorithm for fast autonomous spectral endmember
determination (N-FINDR) maximizing volume iteration algorithm and orthogonal subspace pro-
jection theory. A spectral library time series is first established by choosing the expected spectra
information using prior knowledge, and the fractional snow cover (FSC) is then retrieved by a
fully constrained least squares linear spectral mixture analysis. The retrieved fractional snow-
cover products are validated by the FSC derived from Landsat imagery. Our results indicate that
the improved algorithm can obtain the endmember information accurately, and the retrieved FSC
has better accuracy than the MODIS standard fractional snow-cover product (MOD10A1). ©
2014 Society of Photo-Optical Instrumentation Engineers (SPIE) [DOI: 10.1117/1.JRS.8.084691]
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1 Introduction

Remote sensing technology provides a convenient approach for snow-cover mapping.
Traditional optical remote sensing strategy maps snow through the binary image method
(i.e., each pixel is identified as snow or no snow). However, this approach ignores the spatial
heterogeneity problem caused by objects, such as rock, soil, and/or vegetation other than snow,
especially in some regions where the underlying surface types and terrain are complex. A mixed
pixel may contain snow, rock, vegetation, and other land cover, whose recorded spectral infor-
mation is a mixture of various land surfaces.' Specifically, for medium and low-resolution
imageries, such as the moderate resolution imaging spectroradiometer (MODIS), the lower
the resolution, the greater the possibility of different land surface properties being located within
a single pixel.” Under these circumstances, it is important to unmix the mixed pixels for better
quantitative analysis of snow-cover mapping.

Traditional or intelligent classification algorithms (e.g., supervised classification, neural net-
works, support vector machines) can only detect the snow appearance at the pixel level, thus no
subpixel information is retained. Salomonson and Appel proposed a statistical model based on
the snow in European and American snow-covered areas that could measure the global fractional
snow-covered area (fsca) on a subpixel scale. However, a serious limitation of this empirical
linear regression algorithm is that it is spatially and temporally dependent.® Currently, a number
of quantitative analysis approaches (e.g., anomaly detection, endmember extraction, and spectral
mixture analysis) used for subpixel component analysis for hyperspectral imagery were intro-
duced to MODIS to resolve mixed pixels.*
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The existing endmember extraction algorithms for hyperspectral imagery mainly include
convex analysis and statistical analysis. Boardman et al. proposed an endmember extraction
approach based on pure pixel index.® Winter found a solution of maximum volume based
on dimension reduction called N-FINDR (an algorithm for fast autonomous spectral endmember
determination).” Recently, endmember extraction based on statistical analysis has developed rap-
idly. Zare and Gader put forward an endmember extraction method based on the Dirichlet dis-
tribution function,® and Banerjee et al. proposed an endmember extraction algorithm based on a
support vector machine.’ Geng developed a maximum volume endmember extraction algorithm
without the reduction of dimensions. The algorithm can overlook small targets easily, but can
preserve abnormal pixels better than the N-FINDR algorithm.> However, as MODIS has a lim-
ited number of bands and dimensions compared to hyperspectral images, the quantitative analy-
sis methods for hyperspectral images cannot be used directly for MODIS endmember extraction
and automatic unmixing.

In this paper, we propose an improved N-FINDR endmember extraction algorithm based on
convex theory combined with the idea of orthogonal subspace projection (OSP),'® which is used
for hyperspectral imagery to extract the endmembers for MODIS imagery automatically. Then,
we select the most suitable spectra property curves for different land cover types based on prior
knowledge to build a spectral library to retrieve fgca information from MODIS data.

2 Test Area and Data

2.1 Study Area

Our study area is in a 30, 020-km? catchment in the northern Qilian Mountains, which are the
headwaters of the Hei-he River. The Hei-he River is the second largest inland river in northwest
China, with a main stream length of 821 km. The elevation ranges from 2406 to 5343 m. The
local climate is mainly controlled by the high-latitude westerly and polar air circulation.'' The
river basin encompasses a large range of elevations, slopes, and vegetation types and thus is
suitable for developing a snow-mapping algorithm, especially one that focuses on mixed-
pixel unmixing (Fig. 1).

2.2 Data

2.2.1 MODIS data

MODIS images have been widely used in climate research,'>”'* hydrologic modeling, and
glaciology.'® The MODIS daily snow product (MOD10A 1), available at 500-m spatial resolution
at least twice daily,'”* provides two types of snow products in version 5, a binary snow-cover
product and a fractional-snow-cover (fsca) product. The fgca product is produced based on an
empirical relationship between fgc4 and the normalized difference of snow index (NDSI).*! The
MODIS surface-reflectance product (MODO9GA) provides an estimation of the surface reflec-
tance, as it would be measured at ground level in the absence of atmospheric scattering or absorp-
tion. MODO9GA provides bands 1-7 in a daily gridded L2G product in the sinusoidal projection,
including 500-m reflectance values and 1-km observation and geolocation statistics.

In this study, MOD10A1 and MODO9GA are downloaded from the National Snow and Ice
Data Center website, with a spatial resolution of 500 m. The MODIS Reprojection Tool is used
to conduct the data format conversion, coordinate transformation, and mosaic. The output data of
MODI10AL1 is fractional snow cover (FSC).?? The selected bands of MODO9GA are bands 1-7,
wherein the fifth band has been removed as bad data.

15-17

2.2.2 Landsat ETM+

Enhanced Thematic Mapper Plus (ETM+) is a multiband imagery from Landsat-7, which maintains
continuous long-term monitoring of global changes on the Earth. Due to the higher spatial resolution
of ETM+ images, it can provide the suitable validation dataset for our results. In this study, three

Journal of Applied Remote Sensing 084691-2 Vol. 8, 2014



Zhang et al.: Fractional snow-cover mapping using an improved endmember extraction algorithm

96°E 98°E 100°E 102°E
L L
N
I
42°N ; + a2oN
e

Gansu Province

| | Test area Inner Mongolia
Autonomous Region

[l Evergreen Needleleaf Forest
[ Dcciduous Broadleaf Forest
[ Mixed Forest

[ Closed Shrublant

A

[ Permanént Wetldnds
[ Croplands
[ Urban and Built-Up
[ Cropland/Natural Vegetation Mosai
[ Snow and Ice . . .
[ Barren or Sparsely Vegetated Qingha Province

. 0 25 50 100 150 200
[] Water Bodies L= Km

T
96°E 98°E 100°E 102°E

38°N

38°N

o

Fig. 1 The International Geosphere—Biosphere Program land cover map of the Hei-he River basin
in China in 2011.

cloud-free ETM+ images are used, which were obtained on May 18, 2010, April 3, 2011, and April
28, 2012, respectively. The data gaps in these images are filled by the environment for visualizing
images gap fill tools. Taking the snow map retrieved from ETM+ using the SNOWMAP method as
the ground truth,”>7° the fgca is estimated in each 500-m MODIS pixel by coregistering Landsat
ETM+ scenes overlapped with the MODIS pixel and then by summarizing the snow cover in the
30-m ETM+ pixels corresponding to each MODIS pixel.

2.2.3 IGBP land cover data

The International Geosphere—Biosphere Program (IGBP)?’ provides crucial data that is used for
global change models (e.g., net primary production, ecosystem metabolism models, and carbon
cycle models). In this paper, the IGBP land cover data with 500-m resolution in the Hei-he River
basin has been used as the prior knowledge for the spectral endmember extraction (Fig. 1). We
select five categories of land cover (water, soil, bare land, snow, and vegetation) and cloud cover
to build an artificial spectra attribute library for our study area.

3 Methods

3.1 N-FINDR Algorithm

N-FINDR (Ref. 7) is an iterative simplex volume expansion approach that assumes in L-spectral
dimensions, the L-dimensional volume formed by a simplex with vertices specified by purest
pixels (endmembers) is always larger than that formed by any other combination of pixels. N-
FINDR finds those vertices by randomly selecting a set of p pixels from the scene as initial
endmembers and calculates the volume of the simplex formed by these initial endmembers.
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The iterated processes are as follows. First, each of the initial endmembers is replaced one at a
time with the pixel being tested. Second, the simplex volumes formed by each replacement are
calculated. Finally, the algorithm evaluates if replacing any of the initial endmembers with the
pixel being tested results in a larger simplex volume.

Several issues of N-FINDR implementation facilitate the selection of an initial set of end-
member pixels for the algorithm. As noted, N-FINDR starts with a random set of initial end-
members that lead to results, which are unrepeatable and inconsistent.

3.2 Orthogonal Subspace Projection

The OSP approach has been shown to be a versatile technique for a wide range of applications. '°
OSP signal processing methods have been used to extract the interested spectra. The main con-
cept of OSP is iteration and projection, which can calculate the furthest pixel vector from the
average spectrum vector as the endmember and repeat the progress until it obtains all of the
vectors. OSP is used to modify the endmember extraction algorithm in this paper.

3.3 Modified N-FINDR Algorithm with OSP

Combining N-FINDR with the OSP algorithms, we propose an improved endmember extraction
algorithm using a maximizing, volume-based iterative method. First, we set the extracted end-
members to six (representing six categories of soil, water, bare land, snow, vegetation, and cloud,
respectively), and then we reduce the dimensions to five (the dimensions equal to the endmem-
bers minus one). Second, we obtain the average spectrum vector of the remote sensing image and
calculate the furthest pixel vector from the average spectrum vector as the first endmember el.
Third, each pixel vector of the remote sensing image with el is placed in a new array b, and the
transpose (b) X b value is then calculated; the transpose (b) represents the matrix transformation
of b. We then find the maximum value of transpose (b) X b, and the pixel vector that constitutes
the array b is the second endmember e2. Fourth, the first and second endmembers form a new
array ¢ with each of the remaining pixel vectors, and we can calculate the maximum value of
transpose (c) X ¢ again to obtain the third endmember e3. Finally, a new set of endmembers is
produced by iterating the process.

3.4 Spectral Library Building

Using the MODIS surface-reflectance product (MODO9GA) combined with the IGBP land-cover
map, the maximizing volume iteration algorithm is used to extract the endmembers of six land
cover types to acquire the spectrum characteristic curve of those different land cover types; the
outlier data are also removed by an artificial examining method. Then, the 10-day spectral library
time series based on prior knowledge of the Hei-he basin is built for 2009 (Fig. 2).

3.5 Subpixel Unmixing Algorithm

Heinz and Chang developed a fully constrained least squares (FCLS) linear spectral mixture analy-
sis method to obtain the fractional abundances of endmembers. Because no closed form can be
derived from this method, an efficient algorithm is developed to yield optimal solutions.”®

The linear mixture model generally requires two constraints to produce accurate
material abundance. These constraints are the abundance sum-to-one constraint and the
abundance nonnegativity constraint. The linear spectral mixture model can be represented as
follows:

P(L) = cie;+n=Ec+n, (1)

N
doei=1, )
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Fig. 2 Flowchart of the spectral library-building method based on prior knowledge.

0<e <1, 3)

where P is the spectral vector of a pixel, L is the number of spectral bands, and N is the number
of endmembers. The c; represents the fractional abundances of every endmember (e;) in the pixel
vector P. Let E be an L X N matrix denoted by [e;e,. .. ey], Where every column is the end-
member vector. Let ¢ = (¢;¢,...cy)T be a fractional-abundances coefficient vector in the pixel
vector P, where n is the noise. Although Eq. (2) is easy to address, Eq. (3) is difficult to imple-
ment because it results in a set of inequalities and can only be solved by numerical methods.
Consequently, most FCLS-based methods are unconstrained and produce solutions that do not
necessarily reflect the true abundance fractions of materials.

In this case, spectral mixture analysis is based on a set of simultaneous linear equations that
are solved for the components of the pixel-averaged, atmospherically corrected surface reflec-
tance.?® In contrast to models that rely on absolute reflectance, this new method uses the relative
shape of the snow spectrum. This simultaneous solution from FSC and snow properties is nec-
essary because the spectral reflectance of snow is not just only sensitive to grain size but also to
dust or soot content, and organic substances, such as algae and liquid water. Additionally, the
spectrum of the mixed pixel is sensitive to the spectral reflectance of the snow fraction.’*?

4 Results and Discussion

4.1 Endmember Screening and Establishing the Spectral Library

Thirty endmembers are extracted using MODO9GA based on our advanced endmembers extrac-
tion algorithm. Then, the most representative six endmembers (representing snow, cloud, veg-
etation, bare land, soil, and water) from the 30 endmembers, combined with the Hei-he River
basin IGBP land-cover data, are screened (Fig. 3). The spectral curve for “bare land” is very
different from “soil” because soil typically contains much more water than bare land. In total, 36
10-day interval spectral databases are established throughout the year of 2009 in the Hei-he
river basin.

The algorithm takes advantage of maximizing both the volume and dimensionality reduction
of the N-FINDR algorithm and also the iterative projection used in the OSP algorithm. Thus, the
algorithm increases the computing speed, extracts endmembers that are more representative,
avoids the OSP algorithm disadvantage of dimensionality reduction, and overcomes the N-
FINDR algorithm weaknesses of unrepeatable volume calculation.
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Fig. 3 The reflectance spectral curves of the extracted six endmembers on April 6, 2009.

4.2 FSC Comparison

To verify that the established spectral library can be used to produce a more accurate fractional
snow-cover map, three snow maps are produced using the FCLS algorithm based on the cor-
responding time period of the spectral library on May 5, 2010, April 3, 2011, and April 28, 2012
(Fig. 4). The snow maps retrieved from Landsat ETM+ are used as the ground truth to compare
with the fgcs product generated by our improved algorithm and with the MODIS standard fgcp
product.

Fig. 4 Snow-cover map comparisons over the upper stream watershed of the Hei-he River basin.
(a) Landsat ETM+ snow-cover map on May 18, 2010; (b) MOD10A1 snow-cover map on May 18,
2010; (c) FCLS snow-cover map on May 18, 2010; (d) Landsat ETM+ snow-cover map on April 3,
2011; () MOD10A1 snow-cover map on April 3, 2011; (f) FCLS snow-cover map on April 3, 2011;
(g) Landsat ETM+ snow-cover map on April 28, 2012; (h) MOD10A1 snow-cover map on April 28,
2012; and (i) FCLS snow-cover map on April 28, 2012.
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Table 1 Average FSC from ETM+, MOD10A1, and unmixed FSC products.

FSC (%) May 18, 2010 April 3, 2011 April 28, 2012 Average
FCLS 48.3 14.2 9.99 24.2
MOD10A1 46.7 8.95 4.06 19.9
ETM+ 56.9 271 16.7 33.6

Figure 4 shows the fsca comparisons between ETM+, MOD10A 1, and our new product over
the three days. The results indicate that the MOD10A1 and FCLS products can identify almost
the same snow cover compared to the ground truth, and the FCLS product seems closer to the
ETM+ snow products, especially on April 3, 2011, and April 28, 2012. The MOD10A1 fails to
retrieve snow in the snow cover-transition areas with patchy snow, while the improved FCLS
algorithm consistently maintains its snow retrieval ability in these areas. Table 1 can also support
our conclusion. The results show that the ratio of snow-covered area can be retrieved from FCLS,
MODI10A1, and ETM+ even though the FCLS fgca is much lower than the ETM+ but larger
than MOD10A1 fgca for all three days. The results indicate that using the FCLS unmixing
algorithm based on endmembers extracted with prior knowledge can improve the snow-
cover algorithm of MODI10A1. Specifically, in areas with patchy snow cover, our algorithm
can identify more snow cover than MODI10ALI.

Table 2 summarizes the basic statistics root mean squared error (RMSE), correlation coef-
ficient (R value), and absolute mean error of the fgc, differences between the two fgca products
and ground truth for the three scenes. For each statistic parameter, the FCLS algorithm shows
lower errors and higher correlation coefficient than MOD10A1. The results indicate that
MODI10A1 has larger errors compared to the FCLS algorithm over all regions, and our improved
FCLS algorithm is feasible to monitor fgc, under a subpixel scale with acceptable accuracy in
our study area.

4.3 Model Sensitivity to Terrain Characteristics

To determine the sensitivity of the algorithms, we examine the relationship of the fractional
errors to the following terrain characteristics: elevation, slope, aspect, and roughness34 as calcu-
lated by the Shuttle Radar Topography Mission DEM V004.% Figure 5 shows the mean fgca
errors between two products and ETM+ as a function of elevation, slope, aspect, and roughness
in our study area. The results show that terrain characteristics affect the accuracy of fractional
snow-cover identification for all the MOD10A1 and FCLS snow products. The errors increase
with elevation and reach a maximum at approximately 4500 m and then decrease gradually as

Table 2 Error analysis about MOD10A1 FSC products and unmixed FSC products.

Date Products RMSE R Absolute average difference
May 18, 2010 FCLS 0.20 0.94 0.23
MOD10A1 0.23 0.89 0.31
April 3, 2011 FCLS 0.15 0.89 0.17
MOD10A1 0.53 0.48 0.88
April 28, 2012 FCLS 0.08 0.84 0.17
MOD10A1 0.13 0.60 0.19
In all FCLS 0.14 0.89 0.19
MOD10A1 0.30 0.66 0.46
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Fig. 5 Absolute error histogram of fgca as a function of elevation, slope, aspect, and roughness.

elevation increases above 4500 m. Because the terrain surface is relatively flat on the plateau in
the study area where the elevation is higher than 4500 m, both the MOD10A1 and FCLS algo-
rithms can extract more snow with higher accuracy. Slope and roughness are two other factors
that cause large errors for snow mapping, and our study confirms this observation and shows that
the errors increase with slope and roughness but that the relationship becomes uncertain when
errors are larger than the threshold. For aspects, the errors increase clockwise from north to south
and decrease clockwise from south to north, indicating that more snow can be identified on the
back sunny slopes than the sunny slopes because more snow cover accumulates on the north
slope and snow on the south slope melts quickly on the plateau. In summary, we observe that
elevation is the major factor, while aspect produces the smallest effect among the topographic
effects that cause lower accuracy of snow identification; the FCLS algorithm has smaller errors
than MOD10AT1 under various terrain conditions. Hao et al. found that the standard MODIS
snow-cover product has poor accuracy over the Tibetan Plateau mainly due to topographic
effects.® To improve the accuracy of MODIS snow identification in the mountainous areas,
the moderate resolution of optical remote sensing images must be first corrected for topography.

5 Conclusion

This study proposes an improved endmember extraction method to map FSC using a volume-
based iterative method that combines the N-FINDER and OSP algorithms. The improved algo-
rithm takes advantage of both maximizing the volume iterative and dimensionality reduction of
the N-FINDR algorithm, runs effectively without dimension restrictions, and also retains small
targets. The use of the algorithm is an ideal method for extracting endmembers through subpixel
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unmixing by establishing a spectral library with prior knowledge; therefore, the algorithm can be
used to map FSC on a subpixel scale.

To verify the possibility of using an established spectral library based on prior knowledge of
one year to produce fgca products for other years, the FSC derived from higher spatial resolution
Landsat images is used as ground truth to validate the retrieved FSC. The results indicate that the
improved algorithm can obtain endmembers accurately and that the established spectral library
can be used for measuring subpixel snow cover. Three scenes of fgca maps retrieved from
MODO9GA products are produced in different years using the established spectral library,
and three Landsat ETM+ retrieved snow maps are used to validate the fgcs products generated
by our improved algorithm. Compared to the MODIS standard fgca product, our algorithm
provides more accurate snow mapping for the study area, especially in the snow-cover edge
area because the FCLS algorithm has smaller RMSE and mean errors, but higher R values.

To determine the sensitivity of the algorithms to terrain characteristics, we analyze the in-
fluence of different terrain characteristics on our subpixel unmixing algorithm with various ele-
vations, slopes, aspects, and roughness. The results indicate that the terrain characteristics
seriously impact the accuracy of snow identification for both MOD10A1 and FCLS algorithms.
Although our improved FCLS algorithm performs better and has smaller errors than that of
MODI10A1 under various terrain conditions, the topographic effect is the major reason for
the low accuracy of snow identification using optical remote sensing data in complex terrain
conditions. Therefore, topographic correction before snow mapping could be a possible way
to improve the accuracy of MODIS snow identification in mountainous areas.
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