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Abstract Delimiting the urban growth boundary (UGB) is important for limiting urban sprawl and
improving urban sustainability. However, the future UGB delimitation for the entire China is still lacking.
Here, we delimited China's UGBs before 2100 under localized shared socioeconomic pathways and 11 urban
expansion modes (i.e., spontaneous growth, organic growth, and nine modes integrating both) and evaluated
the urban shrinkage pressure and the effects on other land use/cover types and ecosystem services. The results
revealed that China's urban land demand was projected to increase first and then decrease under five scenarios
before 2100. The extent of UGBs was projected to be 121,199-142,982 km?, 34.14-58.25% higher than the
urban area in 2020. As a result of urban population decline, China's urban land demand in 2100 was projected
to be 20.83-53.41% lower than the extent of UGBs, implying that China, especially the three provinces of
Heilongjiang, Jilin, and Liaoning, will face remarkable urban shrinkage pressure. Future urban expansion in
China will mainly occupy cropland, and lead to a simultaneous decline in habitat quality, food production

and carbon sequestration. Spontaneous growth will cause greater losses of ecosystem services than organic
growth at the national scale, while in some provinces, such a difference will be reversed. To address the urban
shrinkage pressure, China needs to control urban area and optimize urban spatial patterns based on UGBs.

In addition, the place-based optimal urban expansion mode is also required to reduce the negative impacts of
future urban expansion on ecosystem services and promote sustainable development.

Plain Language Summary Urban expansion has caused a series of ecological and social problems.
Therefore, setting urban growth boundaries around cities to limit urban sprawl within such boundaries and
reduce its negative impacts has been a critical way for sustainable development. This study delimited China's
urban growth boundaries before 2100 under five scenarios of localized shared socioeconomic pathways and

11 urban expansion modes (i.e., spontaneous growth, organic growth, and nine modes integrating both) and
evaluated the potential effects of future urban expansion on urban shrinkage pressure, other land use/cover
types and ecosystem services. The results showed that China's urban land demand was projected to show

an increasing trend followed by a decrease under five scenarios from 2021 to 2100, leading to a nationwide
urban shrinkage pressure, and the effects of future urban expansion on ecosystem services varied with urban
expansion modes. This study suggests that China, especially the three provinces of Heilongjiang, Jilin, and
Liaoning, should take measures to optimize urban spatial patterns and address urban shrinkage pressure, and
each province needs to take the place-based optimal urban expansion mode based on the environmental, social,
and economic characteristics to improve urban sustainability.

1. Introduction

Urban expansion has caused a series of problems, such as losses of natural habitats, reduction of cropland,
environmental pollution, and so on (Grimm et al., 2008; Seto et al., 2012; Wu, 2014; Ye et al., 2020). To limit
urban sprawl and reduce the negative impacts of urban expansion, the United States has taken the lead in delim-
iting urban growth boundaries (UGBs), that is, setting boundaries around cities and limiting urban expansion
within such boundaries (Daniels, 2001). This approach can effectively protect the cropland and natural habitat
around cities (Wei & Ye, 2014), alleviating the contradiction between urban development and the conservation
of resources and environment to realize sustainable development (Jiang, Chen, et al., 2016; Long et al., 2013;
Tayyebi et al., 2011). In China, where the urban land area (ULA) is increasing rapidly, delimiting UGBs has
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been explicitly included in the Measures for Formulating City Planning published by the Ministry of Housing
and Urban-Rural Development in 2005 (Ministry of Housing and Urban-Rural Development of PRC, 2005) and
the Guiding Opinions on the Overall Planning for Land Use at the City, County, and Township Levels in 2009
(Ministry of Land and Resources of PRC, 2009). The delimitation of the UGB has been a critical way to improve
urban sustainability in China (Jiang, Cheng, et al., 2016; Long & Mao, 2010).

As an effective urban planning and management method implemented worldwide (Bengston & Yeo-Chang, 2006;
Gennaio et al., 2009; Han et al., 2009; Jun 2004; Mubarak, 2004), the delimitation of UGBs has been studied for
a long time. Currently, most of the UGBs in practice are mainly based on local policies, development needs and
experts' experiences (Chettry & Surawar, 2021; Yang, Zhang, et al., 2019). For example, experience-based UGBs
were first qualitatively established and then delineated according to different development needs in Portland,
Oregon, USA (The Nature of 2040, 2000). However, this planning method usually lacks sufficient scientific
evidences and quantitative analyses, which is considered to be possibly not well adapted for the complex urban
growth in the future (Long et al., 2013). In addition, more studies were conducted on the quantitative UGB delin-
eation based on the land use suitability evaluation (Bhatta, 2009; Cerreta & De Toro, 2012; Ma et al., 2017). For
example, Wang et al. (2012) delineated the rigid UGBs and elastic UGBs based on the land ecological suitability.
Ye et al. (2015) provided references for future UGB delineation by measuring ecological resistance to urban
expansion. By combing the ecoenvironmental sensitivity and urban residential activity, Jia et al. (2019) evalu-
ated the urban expansion potential and delimitated future UGBs based on the predicted urban expansion scale.
However, given numerous natural and socioeconomic factors which influence urban growth in complex ways at
different spatial-temporal scales, these simple UGB delineation methods based on the suitability or restriction
evaluation have limitations (Liang et al., 2018) and cannot effectively be used in future urban planning and devel-
opment (Ma et al., 2017).

Instead, with the development of remote sensing and geographic information system, the methods of simulating
urban dynamics based on urban models and delineating UGB based on the simulation results were widely used
and had become a common way to quantitatively delineate UGB (Wang et al., 2014). The main idea of these
approaches is to estimate the urban land demand (ULD) according to environmental suitability and carrying
capacity first and then simulate the potential urban spatial patterns by using urban expansion models to determine
the maximum urban growth range (Tan et al., 2020). For example, Long et al. (2009) obtained the ULA through
the urban master plan and developed UGBs based on a constrained CA model. Sakieh et al. (2015) determined the
ULD based on the historical urban growth trend, simulated the spatially explicit probability of urban expansion
by using the slope, land use, exclusion, urban, transportation, hillshade (SLEUTH) model, and used a threshold
to define UGBs. Liang et al. (2018) estimated the ULD based on the system dynamics model and then performed
morphological dilation and erosion on the simulation results of the Future Land Use Simulation (FLUS) model to
delineate the UGBs. Gantumur et al. (2020) calculated the ULD by using the analytic hierarchy process method
and realized spatial simulation and UGB delimitation through an artificial neural network-cellular automata
(ANN-CA) model. Tariq and Shu (2020) estimated the future ULD by using Markov chains and simulated the
spatial pattern of urban land based on the CA model. In addition, CA models optimized with logistic regres-
sion (Liu, Zhang, et al., 2017), ant colony optimization (Ma et al., 2017), particle swarm optimization (Feng
et al., 2018), genetic algorithm (Yang, Gong, et al., 2019), or coupled with models such as soil conservation
services (Xu et al., 2013), comprehensive ecological security (Cong et al., 2018), and dual-environmental evalu-
ation (Zhang et al., 2020) have also been widely used in delimiting UGBs.

Existing studies have built a good foundation for China's UGB delimitation, yet there are still some inadequa-
cies. First, the UGB delimitation of China is concentrated at the scale of city or urban agglomeration (Wang
et al., 2014). Relevant research at the national scale only includes the delimitation results of historical urban
boundaries (Li et al., 2020), lacking research on the future UGB delineation of China. For example, Long
et al. (2009) delimited UGBs in Beijing. Wu et al. (2017) identified UGBs in the Yangtze River Delta urban
agglomeration. Liang et al. (2018) delineated UGBs in the Pearl River Delta region. Second, related research
needs to be improved in both ULD estimation and urban spatial pattern simulation. In terms of ULD estimation,
owing to a lack of a unified framework for scenario setting, the simulated ULDs are incomparable under different
scenarios and scales in previous studies (Feng et al., 2019; Guo & Huang, 2018; Zhang et al., 2011). In terms of
urban spatial pattern simulation, existing urban models used in China's future UGB delineation cannot effectively
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simulate urban expansion under diverse urban expansion modes, making it difficult to fully demonstrate the
potential urban spatial patterns in the future (Chen et al., 2019; Meentemeyer et al., 2013).

Shared socioeconomic pathways (SSPs) provide a reliable framework for China's future ULD estimation. SSPs,
a set of socioeconomic pathways with a basic analysis unit of country, were released by the Intergovernmen-
tal Panel on Climate Change (IPCC). By considering population, economic, policy, technology, environment,
resource, and other factors and combining mitigation and adaptation to climate change challenges, SSPs provide
a unified framework for global urban expansion simulation and have been widely used in future global urban
development and economic growth forecasts (Jiang & O Neill, 2017; O’Neill et al., 2014, 2017). However, the
original SSPs still have some inadequacies in future population estimations of China, limiting their ability to
predict China's future urban development. The reasons are as follows: (a) the outdated population in 2000 is used
as initial input data in the population projection model, (b) the parameters of the population projection model
have not been modified according to national population conditions and policies, such as the two-child policy,
and (c) with a basic simulated unit of country, provincial development differences have not been considered
(Jiang et al., 2017, 2018). In response to those inadequacies, Chen, Guo, et al. (2020) localized the original
SSPs by considering family planning and household registration policies in China and reestimated the provincial
population and urban share under SSPs from 2010 to 2100 by considering the impacts of development policies

99 ¢

adjustments such as “two-child policy,” “compulsory education policy,” and population ceiling policies in megac-
ities. The localized SSPs provide a more reliable scenario framework and basic data for future ULD estimation

in China.

Models such as FLUS (Liu, Liang, et al., 2017), Country-Level Urban Buildup Scenario-Spatially Explicit,
Long-term, Empirical City development (CLUBS-SELECT) (Gao & O'Neill, 2020), SLEUTH (Zhou et al., 2019),
UrbanMOD (Seto et al., 2012), CLUMondo (van Asselen & Verburg, 2013), and Land Use Scenarios Dynamics
Model-urban (LUSD-urban) (He et al., 2016, 2021; He, Li, et al., 2017) are commonly used in urban expansion
simulations. Researchers have simulated global and Chinese urban spatial patterns by using the urban expansion
models above, providing the spatial distribution of future urban land for delimiting UGBs in China. However,
urban expansion was always presented by the state transition of individual pixels during each simulation iteration
in these traditional CA models (Li & Gong, 2016), which has difficulty reflecting the actual urban expansion
in patches and has limited ability to effectively simulate urban growth under diverse urban expansion modes
(Chen et al., 2014; Hu et al., 2016). The patch-based urban model with an additional module to simulate changes
in urban patches is another form of CA model in urban growth modeling (Li et al., 2017), which has been contin-
uously improved and widely used (Chen, 2022; Dorning et al., 2015; Liang et al., 2021; Soares-Filho et al., 2002;
Wang & Marceau, 2013). In addition to improving the accuracy of urban expansion simulations, these urban
models with a basic unit of patch composed of several neighboring cells can effectively simulate different urban
expansion modes (Chen et al., 2019; Liu et al., 2021; Yang, Gong, et al., 2019).

This study aimed to delimit China's UGBs before 2100 under different scenarios and diverse urban expan-
sion modes. First, the ULD of China from 2021 to 2100 was estimated based on the localized SSPs. Next, the
patch-based LUSD-urban model was developed to simulate China's urban spatial pattern from 2021 to 2100
under 11 urban expansion modes (i.e., spontaneous growth, organic growth, and nine modes integrating both)
with the province as simulation unit and a spatial resolution of 1 km. Then, China's UGBs were delineated based
on the simulation results. Based on UGBs, the pressure of urban shrinkage was analyzed and the potential impacts
of urban expansion on habitat quality, food production, and carbon sequestration were evaluated, providing scien-
tific evidence for exploring the optimal path of China's future urban development.

2. Data and Methods
2.1. Data

Urban land data, land use/land cover data, digital elevation model (DEM) data, net primary productivity (NPP)
data, GIS auxiliary data, and population data were used in this study (Table 1). The urban land data for 2000-2020
originated from He et al. (2019) at a 1-km spatial resolution, with an overall accuracy of 90.9%. In this data set,
urban land is defined as urban built-up area, where the human-constructed elements cover more than 50% of
a pixel, excluding rural residential area (Huang et al., 2020; Liu et al., 2014). The land use/land cover data for
2015 were obtained from the Data Center for Resources and Environmental Sciences of the Chinese Academy of
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Table 1
Data Description
Data category Data/Category name Year Spatial resolution/overall accuracy
Urban land data Urban (1) and nonurban (0) 2000-2020 1 km
90.9%
Land use/land cover data Cropland, forest, grassland, wetland, bare land, urban land, rural 2015 1 km
residential area and other construction land, and other land
>90%
Digital elevation model data - - 1 km
Net primary productivity data - 2006-2015 1 km

GIS auxiliary data

Population data

Administrative boundaries, city centers, roads, and rivers - —
Nature reserves - -
Urban population census data 2005-2015 -
Population and urban share data under the localized SSPs 2020-2100 -

Sciences (RESDC) (http://www.resdc.cn) featuring a 1-km spatial resolution. This data set was generated from
visual interpretation with TM/ETM remote sensing images as the main data source. The overall accuracy of land
use/land cover data is 93.00% (Ning et al., 2018). The DEM data originated from the Geospatial Data Cloud Plat-
form of the Computer Network Information Center of the Chinese Academy of Sciences (http://www.gscloud.
cn), with a spatial resolution of 1 km. The NPP data for 2006-2015 were acquired from He, Liu, et al. (2017)
with a spatial resolution of 1 km. This data set was calculated by using the Carnegie-Ames-Stanford approach
(CASA) model based on land use/land cover data, normalized difference vegetation index (NDVI) data, and
meteorological data. The GIS auxiliary data include administrative boundaries, city centers, roads and rivers,
gathering from the National Geomatics Center of China (http://www.ngcc.cn), and the nature reserves data from
RESDC (http://www.resdc.cn). The population data include the provincial urban population census data of China
during 2005-2015 from the National Bureau of Statistics (https://data.stats.gov.cn/) and the provincial population
and urban share data of China under localized SSPs during 2020-2100 from Chen, Guo, et al. (2020). To ensure
data consistency, the coordinate system of raster and vector data was unified to Albers projection, and the spatial
resolution of raster data was unified to 1 km.

2.2. Delimitation of UGB

As shown in Figure 1, provincial linear regression models to estimate urban land area were developed based on
historical data, and future urban land area in each province was estimated based on the future urban population
obtained by localized SSPs. Then, the patch-based LUSD-urban model was developed to simulate urban expan-
sion under diverse modes. Finally, a morphological method was applied to the simulation results to delineate
China's UGBs.

2.2.1. Estimation of Urban Land Demand

Referring to He et al. (2021), a linear regression model was used to estimate provincial ULD under five SSPs.
According to the National New Urbanization Planning (2014-2020) (The State Council of PRC, 2014), consider-
ing that China's urban growth was population growth oriented, the urban population was used as an independent
variable to estimate the future ULD of China. Specifically, we first developed linear regressions for the historical
urban population and ULA in each province using data from 2005 to 2015. Then, we modified the equations
to ensure that the regression results based on the urban population in 2020 from localized SSPs in 2020 were
consistent with the actual ULA of 2020. The modified equation can be expressed as:

Al = fo;+ P XUP! +e&is (1)
where A refers to the ULD of province i in year ¢ under scenario s. U P/ refers to the urban population of prov-

ince i in year ¢ under scenario s. fy and S refer to the fitting parameters. ¢;; refers to the modified parameter,
which can be expressed as £;, = A2 — gy, — i, X UP?™. The R? of all regression equations are greater than
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Figure 1. Flowchart (a) and schematic diagram of urban growth boundary delimitation under different urban expansion
modes (b). Note. T refers to the urban expansion mode index, defined in Section 2.2.2.

0.85 at a 95% significance level. After the establishment of regression equations, we estimated future ULD under
five SSPs in each province by using the urban population data provided by localized SSPs.

2.2.2. Spatial Estimation of Urban Expansion

A patch-based LUSD-urban model was developed to simulate future urban expansion in each province. This
model adopts the following assumptions: (a) urban areas are projected to expand in patches, and the urban expan-
sion modes of urban patches include organic growth and spontaneous growth (Chen et al., 2014), (b) the transition
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from nonurban land to urban land is irreversible, and urban land will not be converted to nonurban land, and (c)
the spatial driving factors remain constant during the simulation process.

To simulate urban expansion, the LUSD-urban model calculates the development probability of nonurban pixels
converted to urban pixels by integrating suitability factors, inheritance factors, constrained factors and neighbor-
hood effects (He et al., 2006, 2008). The development probability can be expressed as:

m=2 R
'PKAX,y=<Z WX S/xy +VVm 1 X ny_VVmX Iny>XH ECIxy (2)

j=1 r=1

where ' Px ., refers to the converted probability from land use type K to urban land in pixel (x,y) and year ¢. 'S .,
refers to the normalized score of suitability factor j (1, 2, ..., m — 2) ranging from O to 100. m — 2 refers to the
number of suitability factors. W refers to the weight of suitability factor j. ' N, and W,,_, refer to the neighbor-
hood effect in pixel (x,y) and year ¢t and its weight, respectively. ' N, , can be expressed as follows:

’NVy_ZxZ(Wx'G)—szlG“ 3)

where W, refers to the weight of the influence of urban pixel in the neighborhood at distance C on the conversion
of nonurban pixel (x,y) into urban pixel, which can be expressed as a reciprocal of the Q power function with
0=1,2,3, ... Inthis study, Q is defined as 1. G, is a binary variable equal to in urban pixels and 0 in nonurban
pixels at distance C. Z is a scalar used to normalize ' N, , between 0 and 100. The window size for the neighbor-
hood effect calculation is defined as 5. ' Ix ., refers to the inheritance of land use type K in pixel (x,y) and year
t, and W, refers to its weight. ‘I ., can be defined as a constant value ranging from 0 to 100. The larger the
value of Ik ., is, the greater the inertia of holding the original land use type. ' EC.,, refers to the constrained
factors, including high-quality cropland and nature reserves, and R represents the number of constrained factors.
Referring to the Regulation on the Protection of Basic Farmlands (The State Council of PRC, 2011), high-quality
cropland is defined as cropland with NPP ranking in the top 80% in each province.

Based on the LUSD-urban model, urban expansion was simulated in patches with reference to Chen et al. (2014).
The size of urban growth patches was calculated according to the power law between the size and quantity of
urban growth patches. The equation can be expressed as:

A= a()(rarea)u] (4)

where A, refers to the size of patch I. gy and qa; are the fitting parameters, which can be determined according to
the distribution characteristics of the urban patch area in the historical urban expansion. The larger a;, the more
uneven size of urban growth patches (Fragkias & Seto, 2009). r.,, a random value of (0,1], represents the prob-
ability of selecting a specific patch size from the actual size distribution of urban growth patches.

After determining the area of the new urban growth patch, the urban expansion mode of the new urban growth
patch needs to be established to determine its spatial location. Referring to Chen et al. (2014), we defined the
urban expansion mode index 7 as 0.0, 0.1, ..., 0.9, 1.0 to indicate 11 urban expansion modes (i.e., spontaneous
growth, organic growth, and nine modes integrating both). A random value R, in the range of [0,1), was used
to obtain the urban expansion mode of the urban growth patch. If R,y is smaller than the threshold 7, the new
patch will grow in spontaneous growth; otherwise, it will grow in organic growth. When 7" = 0.0, Ry, of all new
patches is larger than or equal to 7, indicating that all urban growth patches will grow in organic growth. When
T = 1.0, R of all new patches is smaller than 7, indicating that all urban growth patches will grow in spontane-
ous growth. When T is between 0.0 and 1.0, the new patches will consider both organic and spontaneous growth
(Figure 1b). The location of urban growth patches varies with urban expansion modes. For organic growth, the
pixel with the highest development probability (Equation 2) was taken as the seed to grow and form a patch. For
spontaneous growth, development potential ' POk, (Equation 5) was substituted without considering neighbor-
hood effects for development probability (Equation 2) and take the pixel with the highest development potential
as a seed. ' POk ., can be expressed as:

m—1

"POkxy = <Z (Wi X'Sjxy) = Wn X ’IK_X,y) X H "ECrxy 5)
j=1

r=1
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Specifically, both organic growth and spontaneous growth begin with seeds and grow through a moving window.
First, the seed will be regarded as the center of the moving window, and a nonurban pixel in the neighborhood
will be selected and converted to urban pixel according to the development probability (Equation 2) or potential
(Equation 5) based on the roulette wheel method (Liu et al., 2012). Then, the window will be moved to center on
the newly developed urban pixel, and the next nonurban pixel will be selected and converted in the same way. This
step will be iterated until the neighborhoods are all occupied with urban pixels or the area of the urban growth
patch meets the size demand (Equation 4), that is, to complete the simulation of a new urban growth patch. The
urban expansion simulation will not be stopped until the total area of newly developed urban patches reaches the
ULD. Referring to Chen et al. (2014), we set the moving window to 3*3 in size.

To ensure the validity of the urban expansion simulation results, the parameters of the LUSD-urban model need
calibration through historical data. Referring to He et al. (2008), the adaptive Monte Carlo approach was adopted
to automatically calibrate the weight parameters in the LUSD-urban model. In adaptive Monte Carlo, regional
historical urban expansion will be repeatedly simulated with different parameters. Then, with an evaluation crite-
rion of the kappa index, the simulation result closest to the actual situation will be found, and the corresponding
weight parameters will be regarded as the best parameters of the model. Specifically, distance to city centers (with
populations of less than 0.5, 0.5-1, 1-5, and more than 5 million), railways, highways, national roads, provincial
roads, rivers, DEM, and slope data were taken as suitability factors. The land use/land cover data in 2015 were
used as inherence factors. High-quality cropland and nature reserves were used as constrained factors. Then, 500
sets of parameters were produced based on adaptive Monte Carlo to simulate urban expansion from 2000 to 2010.
The set of parameters with the highest kappa between the simulation result in 2010 and urban land data for 2010
was regarded as the best parameters for model calibration. The kappa of China's urban land in 2020 simulated by
the patch-based LUSD-urban model after calibration was 0.69, indicating a relatively high accuracy. After that,
we took urban land data for 2010 as initial input data, calibrated the model by using urban land data for 2020 in
the same way, and then simulated future urban expansion in each province by using the calibrated model.

2.2.3. Delineation of UGB Based on the Simulation Results

Affected by complex terrain conditions and rapid urbanization, the urban landscape fragmentation of many regions
in China tends to be high. In this case, the simulation results of urban land may be dispersed, which are unsuitable
for restraining urban development and difficult to be directly used as UGBs. Following Liang et al. (2018), we
combined morphological dilation and erosion and performed them to delineate UGBs (Figure 1b). The morpho-
logical method includes opening operations composed of erosion first and dilation followed and closing opera-
tions composed of dilation followed by erosion (Narayanan, 2006). The opening operation can remove fragmented
urban patches, while the closing operation can bridge gaps between urban patches. The dilation algorithm uses
a specific filter to move pixel by pixel on the image and assigns the maximum value among the image values
covered by the filter to the central pixel in the filter. For the simulation results of future urban land classified as
urban (1) and nonurban (0), the movement of the filter in dilation can convert its central nonurban pixel to an
urban pixel. In contrast, the erosion algorithm assigns the minimum value in filter coverage to the central pixel in
traversing the entire image. For the simulation results of future urban land, the movement of the filter in erosion
can convert its central urban pixel to a nonurban pixel. The specific formulas of dilation and erosion can be found
in Liang et al. (2018). Specifically, referring to Liang et al. (2018), the closing operation was first executed to
connect adjacent urban patches and then the opening operation was executed to remove some isolated tiny patches
to delineate UGBs by using a filter with removal of four pixels at corners. As shown in Figure 1b, the delineation
results of UGBs processed by morphological dilation and erosion can be more consistent with the rules and the
actual situation of urban expansion, for example, newly developed urban patches must be connected to existing
urban patches through roads and other infrastructures. To ensure the boundaries are continuous and smooth while
close to the urban outline, the filter was defined as 3*3 in size referring to Chen et al. (2014).

2.3. Estimation of Pressures From Urban Shrinkage

With the socioeconomic recession, urban shrinkage began to appear (Haase, Rink, et al., 2014; Haase et al., 2016;
Yang & Dunford, 2018), usually manifesting in urban population decline (Kroll & Kabisch, 2012), urban hous-
ing vacancies (Wang et al., 2020) and existing urban infrastructure idling (Haase, Rink, et al., 2014; Sousa &
Pinho, 2015). In view of massive urban shrinkage in China, which had been a stress for urban sustainability (Yang
et al., 2021), and the pressure from future urban shrinkage in each province was still unclear, we evaluated the
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future pressure from urban shrinkage at the provincial level from 2021 to 2100 under five SSPs following the
method adopted by Chen, Li, et al. (2020). Referring to Long and Wu (2016), we assumed that the impacts of
other driving factors, such as economic depression, will be first reflected in population decline, and then affect
the urban land demand. Thus, urban shrinkage pressure can be defined as the percentage of unnecessary ULA
relative to the urban population in 2100 to the extent of UGB (i.e., the ULA when the urban population peaked)
(Chen, Li, et al., 2020). The pressure can be expressed as:

AUGB _ AZIOO

PRy = — ™ % 100% ©
Ai,SAT
Aiioo = fo, + B, X UP;,2:100 e -

where PR, r refers to the urban shrinkage pressure of province i under scenario s and urban expansion mode 7.

AVGB and A?!% refer to the extent of the UGB of province i under scenario s and urban expansion mode 7 and the
ULD of province i under scenario s in 2100, respectively. AI.Z_LOO can be calculated according to Equation 7, where
U P21 refers to the urban population in 2100 of province i under scenario s.

2.4. Evaluating the Effects of Urban Expansion on Ecosystem Services

Ecosystem services are the foundation for human well-being and sustainable development, including support-
ing services, provisioning services, regulating services, and cultural services (Millennium Ecosystem Assess-
ment, 2005; Wu, 2013, 2021). Land use/cover change, population growth, and economic growth owing to rapid
urban expansion all affect and change ecosystem services directly and indirectly. Therefore, understanding the
impacts of urban expansion on ecosystem services is crucial for urban sustainability. In this study, we adopted
habitat quality in supporting services, food production in provisioning services and carbon sequestration in regu-
lating services as examples and evaluated the possible impacts of future urban expansion on ecosystem services
under different scenarios and diverse urban expansion modes.

In this study, we quantified the spatial pattern of habitat quality in China by using the Habitat Quality module
in the Integrated Valuation of Ecosystem Services and Trade-offs (InVEST) model (Sharp et al., 2016; Song
et al., 2020). Then, following Sun et al. (2017), we allocated the provincial total grain output, obtained from the
China Statistical Yearbook (http://www.stats.gov.cn/), to cropland pixels according to NPP data and land use/
land cover data and calculated the spatial distribution of food production. With reference to Meng et al. (2018),
we took NPP to represent the level of carbon sequestration. Specific calculation formulas and parameters for each
ecosystem service were shown in (Texts S1-S3 in Supporting Information S1). The impacts of urban expansion
on ecosystem services were evaluated based on the simulation results of future urban expansion and the ecosys-
tem services at the baseline of 2020. The equation can be expressed as:

S5 = B,V ESiar (Urban’Sp = 3 Ubran ) ®)
where Sf“;f; refers to the ecosystem service loss of province i under scenario s and urban expansion mode 7.
UGB refers to

is,T
whether pixel (x,y) of province i is within UGBs under scenario s and urban expansion mode T for 2021-2100,

~YES,; ;7 refers to the assessed value of ecosystem service in pixel (x,y) of province i. **Urban

with 0 representing outside the UGB and 1 representing within the UGB. **U bran?* refers to the classification
value of urban land in pixel (x,y) of province i in 2020, with 0 representing nonurban land and 1 representing
urban land.

3. Result
3.1. Future Urban Land Demand

The ULD in China from 2021 to 2100 was projected to increase first and then decrease (Figure 2a). China's ULD
was projected to peak at 111,879-115,827 km? in 2042-2048, with an increase of 23.82-28.19% compared with
ULA in 2020 (Table 2). The decline in China's ULD after peaking significantly was projected to differ under
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Figure 2. Future urban land demand in China (a) and provinces (b). Note. The shaded areas indicate the 95% confidence intervals of the estimated urban land demand
in each province. The 95% confidence intervals of China were obtained from the sum of provinces.

different scenarios. SSP1 is a green growth pathway, or a sustainable development pathway, under which the
ULD was projected to decrease by 42.79%, from 115,093 km? in 2044 to 65,850 km? in 2100. SSP2 is a middle
pathway, which can be comprehended as a pathway following the historical development trajectory. Under SSP2,
ULD was projected to decrease by 26.07%, from 113,597 km? in 2046 to 83,979 km? in 2100. Under SSP3, a
regional rivalry pathway with large regional development gaps, the decline will be minimal, with ULD drop-
ping from 113,668 km? in 2048 to 108,712 km? in 2100, decreasing by 4.36%. ULD will experience the most
dramatic decline under SSP4, a highly unequal development pathway within and across countries, which was
projected to decrease by 48.04%, dropping from 111,879 km? in 2042 to 58,128 km? in 2100. SSP5 is a fossil fuel
development pathway that emphasizes a traditional, economic development-oriented way to solve socioeconomic
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Table 2
Maximum Urban Land Demand From 2021 to 2100 of China in Provinces

Maximum urban land demand from 2021 to 2100/km? (corresponding year)
Urban land area

Provinces in 2020/km? SSP1 SSP2 SSP3 SSP4 SSP5

Beijing 2,181 2,239(2030) 2,241(2029) 2,239(2029) 2,231(2029) 2,251(2031)
Tianjin 2,105 2,221(2035) 2,223(2034) 2,191(2032) 2,201(2032) 2,389(2039)
Hebei 3,459 4,564(2045) 4,511(2048) 4,469(2051) 4,477(2043) 4,572(2045)
Shanxi 2,250 2,744(2044) 2,689(2044) 2,660(2046) 2,723(2043) 2,750(2044)
Inner Mongolia 3,662 4,912(2042) 4,806(2041) 4,707(2041) 4,557(2037) 4,943(2042)
Liaoning 2,790 3,094(2034) 3,040(2032) 2,970(2029) 3,062(2033) 3,152(2035)
Jilin 1,186 1,263(2027) 1,267(2027) 1,266(2027) 1,248(2026) 1,264(2027)
Heilongjiang 1,826 1,936(2029) 1,931(2028) 1,920(2027) 1,918(2028) 1,934(2029)
Shanghai 2,618 2,632(2025) 2,632(2025) 2,632(2024) 2,630(2024) 2,634(2026)
Jiangsu 8,120 9,160(2036) 8,896(2034) 8,768(2033) 8,757(2032) 9,222(2037)
Zhejiang 5,439 6,319(2040) 6,164(2037) 6,044(2037) 6,032(2035) 6,425(2041)
Anhui 3,271 5,032(2047) 5,002(2050) 6,717(2100) 5,151(2048) 4,944(2046)
Fujian 3,120 4,345(2045) 4,207(2044) 4,165(2046) 3,977(2039) 4,399(2045)
Jiangxi 2,023 2,896(2048) 2,842(2050) 3,254(2100) 2,797(2045) 2,873(2048)
Shandong 6,625 7,740(2042) 7,573(2041) 7,474(2041) 7,567(2039) 7,763(2043)
Henan 4,179 5,471(2051) 5,463(2057) 5,704(2100) 5,340(2048) 5,448(2052)
Hubei 2,877 3,517(2045) 3,468(2046) 3,581(2049) 3,425(2042) 3,495(2045)
Hunan 2,291 3,195(2047) 3,152(2049) 3,722(2100) 3,099(2045) 3,164(2047)
Guangdong 10,095 11,492(2048)  11,372(2048)  11,270(2048)  11,019(2040)  11,616(2049)
Guangxi 2,293 4,498(2061) 4,912(2088) 9,583(2100) 5,287(2098) 4,426(2061)
Hainan 424 809(2060) 878(2086) 1,150(2100) 773(2056) 828(2060)
Chongging 1,621 2,085(2038) 2,034(2038) 2,032(2043) 2,052(2037) 2,077(2038)
Sichuan 3,453 4,963(2042) 4,831(2042) 4,760(2043) 4,849(2040) 4,922(2042)
Guizhou 986 2,339(2067) 3,752(2100) 5,788(2100) 2,973(2099) 2,294(2069)
Yunnan 2,402 4,479(2048) 4,699(2053) 6,119(2100) 4,772(2052) 4,490(2048)
Tibet 153 199(2058) 201(2060) 207(2068) 199(2063) 203(2062)
Shaanxi 2,869 3,731(2041) 3,605(2040) 3,533(2040) 3,640(2039) 3,737(2042)
Gansu 978 1,339(2049) 1,354(2052) 1,381(2057) 1,362(2049) 1,334(2048)
Qinghai 335 409(2048) 411(2051) 412(2051) 404(2046) 413(2050)
Ningxia 748 1,117(2054) 1,134(2057) 1,326(2100) 1,091(2048) 1,146(2053)
Xinjiang 3,974 7,795(2075)  10,082(2100)  11,072(2100) 7,470(2070) 8,149(2082)
China 90,353 115,093(2044) 113,597(2046) 113,668(2048) 111,879(2042) 115,827(2045)

problems through the pursuit of self-interest. The changing trend under SSP5 was similar to SSP1 with ULD
decreasing by 42.19%.

There were differences in the future ULD in provinces (Figure 2b and Table 2). The ULD of seven provinces,
including Beijing, Shanghai, Tianjin, Heilongjiang, Jilin, Liaoning, and Tibet, was projected to rise to a high
point first and then decrease, with no significant difference in the decline of ULD under different scenarios. Thir-
teen provinces, including Jiangsu, Zhejiang, Fujian, Guangdong, Chongqing, Sichuan, Hebei, Inner Mongolia,
Shanxi, Shandong, Shaanxi, Gansu, and Qinghai, were projected to show a similar trend, with the ULD increas-
ing followed by a decrease, and the differences in the decline of the ULD under the five SSPs can be found. The
trend of ULD in the provinces of Henan, Anhui, Hubei, Hunan, Jiangxi, Guizhou, Guangxi, Hainan, Yunnan,
Ningxia, and Xinjiang was projected to significantly differ under the five SSPs. Among these 11 provinces, the
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ULD of Guizhou and Xinjiang was projected to continuously increase under SSP2 and SSP3, and the ULD of
other provinces was projected to continuously increase under SSP3, while the ULD was projected to show a trend
of increasing first and then decreasing under other scenarios from 2021 to 2100.

3.2. Spatial Patterns of UGBs

There were differences in the extent of UGBs in China under five scenarios from 2021 to 2100 (Figure 3a and
Table 3). Under SSP3, the extent of UGBs will be largest, in the range of 137,309-142,982 km? under 11 urban
expansion modes, which was projected to be 46,956-52,629 km? (51.97-58.25%) larger than the ULA in 2020.
The extent of UGBs in China under other scenarios will be similar, in the range of 121,199-129,668 km?, which
was projected to be 30,846-39,315 km? (34.13-43.51%) larger than the ULA in 2020.

For five provinces, including Anhui, Guizhou, Guangxi, Yunnan, and Xinjiang, the area of urban land to be
expanded within UGBs was projected to be huge and significantly differ under the five scenarios (Figure 3b,
Table 3 and Table S3—S7 in Supporting Information S1). Under SSP3, the extent of UGBs in these five provinces
will be larger than that under other scenarios. For example, in Guangxi, the area of urban land to be expanded
within UGBs was projected to be 8,096-8,879 km? under SSP3, which was 353.07-387.22% of the ULA in
2020, while under other scenarios, the area was projected to be 2,227-3,732 km? (97.12-162.76%). For other
provinces, no significant difference was found in the area of urban land to be expanded within UGBs under
different scenarios. Among these provinces, the area of urban land to be expanded within UGBs will be mainly
larger than 1,500 km? for Henan, Guangdong and Sichuan and will be mainly between 1,000 and 1,500 km? for
six provinces, including Hebei, Inner Mongolia, Jiangsu, Zhejiang, Fujian, and Shandong and will be mainly
between 500 and 1,000 km? for Shanxi, Hubei, Hunan, Jiangxi, Chongqing, and Shaanxi and will be less than
500 km? for the remaining 11 provinces.

For 17 cities with more than 5 million people, the extent of UGBs was projected to have no obvious difference
under the five scenarios (Figure 3c, Tables S8-S12 in Supporting Information S1) but differ under diverse urban
expansion modes (Figure 4). The area of land to be expanded within the UGBs of Chengdu, Hangzhou, and
Chongging was projected to be large. For six cities, including Guangzhou, Tianjin, Chengdu, Hangzhou, Nanjing,
and Jinan, the extent of UGBs under spontaneous growth will be larger than that under organic growth, while in
the six provinces of Shenzhen, Dongguan, Wuhan, Zhengzhou, Shenyang, and Suzhou, such a difference will be
reversed. The extent of UGBs in Beijing and Xi'an was projected to have no obvious regularity under different
urban expansion modes.

3.3. Pressure of Future Urban Shrinkage

China will face urban shrinkage pressure under all SSPs (Figure 5a, Tables S13—S17 in Supporting Informa-
tion S1). Under SSP4, China will face the most severe urban shrinkage pressure, with ULD in 2100 dropping to
58,128 km?, a decrease of 52.04-53.41% compared with the UGB area of 121,199-124,752 km?. Under SSP1
and SSP5, China's ULD in 2100 will decrease by 45.68-47.91%. This value was projected to be 32.99-35.24%
under SSP2. Under SSP3, China will face the smallest urban shrinkage pressure. The ULD of China was projected
to drop to 108,712 km?, decreasing by 20.83-23.97% compared with the UGB area of 137,309-142,982 km?.

As shown in Figure 5b, Heilongjiang, Jilin, and Liaoning will face remarkable urban shrinkage pressure, with a
decrease of more than 90% in ULA under five scenarios and 11 urban expansion modes. In Beijing and Tianjin,
the ULA was projected to decline by 35.57-52.40%. Shanghai, Henan, Guizhou, Guangdong, Guangxi, Xinjiang,
and Tibet will face relatively low urban shrinkage pressure under all scenarios and urban expansion modes, with
a decreasing rate of less than 32.00%. These 12 provinces will encounter similar urban shrinkage pressures under
the five scenarios.

The urban shrinkage pressure in the other provinces was projected to have significant differences under the
five SSPs. Hainan will face smaller pressure under SSP2 and SSP3. 18 provinces, including Hebei, Hubei, and
Yunnan, will face less pressure under SSP3, with substantial urban shrinkage pressure under other scenarios.
For example, in Yunnan, the ULD will continue to increase under SSP3, with an urban shrinkage pressure of
0.00-3.65%, whereas under SSP1 and SSP5, the ULD will decline after peaking in 2066 and 2048, respectively.
Compared with the extent of UGBs, the decline proportion of ULD in 2100 was projected to be as high as
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Figure 3. Extent of urban growth boundaries in China (a), provinces (b), and major cities (c).
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Table 3

Extent of Urban Growth Boundaries in Provinces From 2021 to 2100

Extent of urban growth boundaries under different urban expansion modes from 2021 to 2100/km?

Provinces Urban land area in 2020/km? SSP1 SSP2 SSP3 SSP4 SSP5
Beijing 2,181 2,375-2,397 2,378-2,403 2,375-2,402 2,375-2,390 2,384-2,412
Tianjin 2,105 2,341-2,399 2,352-2,406 2,319-2,364 2,321-2,374 2,521-2,578
Hebei 3,459 4,572-4,736 4,503-4,646 4,457-4,611 4,484-4.,620 4,515-4,726
Shanxi 2,250 2,838-2,966 2,769-2,890 2,755-2,852 2,808-2,920 2,848-2,952
Inner Mongolia 3,662 5,018-5,260 4,913-5,141 4,833-5,049 4,674-4,857 5,069-5,287
Liaoning 2,790 3,220-3,250 3,159-3,216 3,110-3,138 3,189-3,223 3,264-3,313
Jilin 1,186 1,284-1,321 1,294-1,313 1,289-1,309 1,275-1,292 1,293-1,309
Heilongjiang 1,826 2,001-2,043 1,990-2,035 1,980-2,037 1,981-2,029 1,998-2,044
Shanghai 2,618 2,740-2,752 2,742-2,752 2,738-2,753 2,739-2,748 2,738-2,756
Jiangsu 8,120 9,577-9,853 9,334-9,537 9,209-9,377 9,191-9,383 9,639-9,878
Zhejiang 5,439 6,661-6,816 6,491-6,635 6,377-6,501 6,373-6,508 6,754-6,934
Anhui 3,271 5,121-5,232 5,080-5,223 6,809-6,911 5,240-5,364 5,034-5,145
Fujian 3,120 4,413-4,543 4,312-4,419 4,234-4,332 4,080-4,180 4,464-4,553
Jiangxi 2,023 2,942-3,134 2,878-3,081 3,323-3,528 2,842-3,010 2,934-3,097
Shandong 6,625 7,958-8,145 7,812-7,998 7,713-7,864 7,802-7,945 8,004-8,170
Henan 4,179 5,659-5,843 5,616-5,807 5,807-6,091 5,514-5,685 5,603-5,758
Hubei 2,877 3,662-3,836 3,607-3,766 3,670-3,823 3,553-3,715 3,646-3,815
Hunan 2,291 3,232-3,478 3,177-3,428 3,752-4,104 3,127-3,377 3,183-3,444
Guangdong 10,095 11,887-12,433 11,798-12,302 11,713-12,239 11,469-11,901 12,020-12,571
Guangxi 2,293 4,585-5,030 5,043-5,541 10,389-11,172 5,393-6,025 4,520-4,959
Hainan 424 792-908 862-997 1,138-1,337 754-866 811-939
Chongging 1,621 2,183-2,234 2,148-2,181 2,126-2,188 2,153-2,191 2,181-2,229
Sichuan 3,453 5,036-5,270 4,929-5,101 4,869-5,066 4,931-5,122 5,019-5,209
Guizhou 986 2,354-2,568 3,730-4,145 5,187-6,716 2,959-3,197 2,320-2,512
Yunnan 2,402 4,378-4,623 4,606-4,831 6,011-6,351 4,691-4,939 4,390-4,646
Tibet 153 195-214 200-219 203-225 193-210 193-220
Shaanxi 2,869 3,844-3,977 3,722-3,833 3,653-3,781 3,745-3,891 3,847-3,941
Gansu 978 1,367-1,411 1,374-1,424 1,412-1,441 1,382-1,425 1,361-1,408
Qinghai 335 400417 396431 398416 396415 402-420
Ningxia 748 1,174-1,224 1,204-1,231 1,384-1,448 1,145-1,195 1,217-1,242
Xinjiang 3,974 7,898-8,646 10,108-11,168 11,050-12,267 7,541-8,273 8,247-9,046
China 90,353 122,513-126,427 125,321-129,668 137,309-142,982 121,199-124,752 123,270-126,959
59.04-61.88%, resulting in remarkable urban shrinkage pressure. Nine provinces, including Inner Mongolia,
Ningxia, Shaanxi, Shandong, Jiangsu, Zhejiang, Fujian, Sichuan, and Chongqing, will face more severe urban
shrinkage pressure under SSP4. For example, in Inner Mongolia, ULD in 2100 was projected to decrease by
97.92-98.00% compared with the extent of UGBs.
3.4. Occupancy of Urban Expansion Within UGBs on Other Land Use/Cover Types
Future urban expansion in China will mainly occupy cropland (Figure 6a). By 2100, 43.28-47.04% of newly
developed urban land in China was projected to be converted from cropland. Rural residential areas and other
construction land were projected to collectively contribute to 14.91-18.71% of newly developed urban land.
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Figure 4. Spatial pattern of urban growth boundaries in China under shared socioeconomic pathway 1 (SSP1). Note. (1)
represents the Yangtze River Delta Urban Agglomeration; (2) represents the Beijing-Tianjin-Hebei Urban Agglomeration;
(3) represents the Guangdong-Hong Kong-Macao Greater Bay Area; (4) represents the urban agglomeration in the middle
reaches of the Yangtze River; (5) represents the Chengdu-Chongqing Urban Agglomeration. Occurrence refers to the
frequency of pixels within urban growth boundaries under 11 urban expansion modes.

Forest and grassland were projected to account for 11.40-17.11% and 12.19-14.39% of newly developed urban
land, respectively. Wetland and bare land were projected to represent 5.75-7.06% and 3.15-5.23% of newly
developed urban land, respectively.

There were significant differences in the occupancy of future urban expansion on other land use/cover types in
provinces (Figure 6b and Figures S1-S4 in Supporting Information S1). Taking the SSP1 scenario as an example,
for Hunan, Jiangxi, Guangxi, Chongqing, and Hainan, cropland and forest will be the main sources of newly
developed urban land, collectively accounting for 68.56-84.17%. This was evident in the case of Hunan, where
39.53—44.06% and 31.56-39.02% of newly developed urban land were projected to be converted from cropland
and forest, respectively. In Inner Mongolia and Yunnan, cropland and grassland were projected to be the main
sources of newly developed urban land. In Hubei, Heilongjiang, and Ningxia, apart from cropland with the larg-
est proportion, wetland, rural residential area, and other construction land will represent an even proportion. For
example, in Hubei, 49.68-54.54% of newly developed urban land was projected to be converted from cropland,
and 18.87-24.94% and 17.50-20.57% of newly developed urban land were projected to be made up of wetland
and rural residential area and other construction land, respectively. In Guangdong and Fujian, apart from cropland
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Figure 5. Future urban shrinkage pressure in China (a) and provinces (b).

with the largest proportion, forest, and rural residential areas and other construction land will represent an even
proportion. In Gansu and Xinjiang, grassland and bare land were projected to be the main sources of newly
developed urban land. For example, in Tibet, grassland and wetland were projected to collectively contribute
to 63.04-76.00% of newly developed urban land. In Qinghai, cropland, grassland, rural residential area, and
other construction land were projected to occupy evenly, while in Guizhou, cropland, forest, and grassland were
projected to account for an even proportion. In the remaining 14 provinces, including Beijing, Tianjin, and Hebei,
cropland and rural residential areas and other construction land will be the main sources of newly developed urban
land (75.62-96.15%, collectively), while other land use/cover types will constitute a relatively low proportion.
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Figure 6. Occupancy of future urban expansion on other land use/cover types in China (a) and provinces under shared socioeconomic pathway 1 (SSP1) (b).

3.5. Effects of Urban Expansion Within UGBs on Ecosystem Services

Urban expansion in China will cause a simultaneous decline in habitat quality, food production, and carbon
sequestration (Figure 7a). Under SSP3, urban expansion was projected to cause the most severe negative impacts
on ecosystem services, with habitat quality decreasing by 0.40-0.43%, food production decreasing by 0.75-0.97%,
and carbon sequestration decreasing by 0.53-0.69%. Under SSP4, urban expansion will lead to the smallest
losses of habitat quality, food production, and carbon sequestration, decreasing by 0.26-0.28%, 0.51-0.67%, and
0.32-0.42%, respectively. For six provinces, including Tianjin, Anhui, Guizhou, Guangxi, Hainan, and Xinjiang,
the losses of three ecosystem services were projected to have significant differences under five scenarios. Among
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Figure 7. Effects of future urban expansion on ecosystem services in China (a) and provinces under shared socioeconomic pathway 1 (SSP1) (b).

these provinces, five provinces, including Anhui, Guizhou, Guangxi, Hainan, and Xinjiang, will suffer from more
severe ecosystem service losses under SSP3, while the ecosystem service losses of Tianjin under SSP5 will be
higher than those under other scenarios (Figure 7b and Figures S5-S8 in Supporting Information S1).

For the same scenario, urban expansion under spontaneous growth will lead to greater losses of ecosystem
services than that under organic growth (Figure 7a). For example, under SSP1, urban expansion under organic
growth (7' = 0.0) will cause a decrease in habitat quality, food production, and carbon sequestration by 0.28%,
0.55%, and 0.32%, respectively. urban expansion under spontaneous growth (7'= 1.0) will lead to habitat quality,
food production and carbon sequestration dropping by 0.29%, 0.72%, and 0.43%, respectively. In 10 provinces,
including Hebei, Tianjin, Shanghai, Zhejiang, Anhui, Guizhou, Guangxi, Guangdong, Hainan, and Xinjiang, the
losses of ecosystem services were projected to show significant differences under diverse urban expansion
modes. Compared with the urban expansion modes dominated by organic growth (7" < 0.5), the urban expansion
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modes dominated by spontaneous growth (7 > 0.5) will lead to more severe
losses of ecosystem services (Figure 7b and Figures S5-S8 in Supporting
Information S1).

4. Discussion
4.1. Comparison With Existing Studies

We first compared the simulation results of the urban population from the

0 A original SSPs, localized SSPs and the United Nations (U.N.) data set (https://
SSP1 SSP2 SSP3 SSP4 SSP5  U.N. population.un.org/wpp/) (Figure 8a). Under the five scenarios, the urban
SEenano population under localized SSPs was larger than that under the original SSPs
(b) A8 B Gao and O'Neill,2020 mChen et al.,2020 and was closer to the urban population given by the U.N. data set. Without
‘€ |ZGoldewijk et al.,2017 @ Our product taking the adjustment of family planning policies into consideration, this was
-3; 6 1 a possible explanation for the underestimation of the future urban population
* in China (Chen, Guo, et al., 2020; Jiang et al., 2017). In addition, provincial
§4 1 population and urban share with consideration of the differences in socioec-
© onomic development of different provinces were provided by localized SSPs.
G2 - Therefore, more comprehensive and reliable information was provided by the
g l_m original SSPs.
0- SSP1 SSP3 SSP4 SSP5 Then, we compared the simulated future urban land with three published
Scenario urban land products (Figure 8b). These three urban land products all simulate
global urban expansion by 2100 based on original SSPs. The first one is from
Figure 8. Comparison of simulation results of urban population (a) and Gao and O'Neill (2020) at a 0.125-degree spatial resolution. The second data

urban land demand (b). Note. In Figure 8a, the values of the original shared
socioeconomic pathways (SSPs) and the localized SSPs represent the

set is from Chen, Li, et al. (2020), with a spatial resolution of 1 km. The

maximum urban population of China by 2100. The values of the U.N. data set third data set is the HYDE data set from Goldewijk et al. (2017) featuring
represent the maximum urban population of China by 2050. a spatial resolution of 0.083°. The ULD given by Goldewijk et al. (2017)

is smaller than our product, which is consistent with a lower urban popula-

tion estimation result under the original SSPs, while the ULD from Gao and
O'Neill (2020) and Chen, Li, et al. (2020) are generally larger than that from our product. Failing to distinguish
urban and rural land in these two data sets is the main reason for overestimation of future ULD (Figure 9).
Furthermore, ULD in different provinces was used in our work to simulate future urban expansion under 11
modes. Compared with the simulation results based only on the national ULD and single urban expansion mode,
the provincial simulation results in this study were more reliable and can fully demonstrate the possibility of
future urban spatial patterns in each province.

4.2. Similarities and Differences in Future Urban Growth Across Provinces

For Beijing, Tianjin, Shanghai, Heilongjiang, Jilin, Liaoning, and Tibet, there is no obvious difference in the
urban land dynamics and there is a slight expansion of urban land within the UGBs under each SSP scenario
(Figures 2 and 3). This can be related to the limited urban population growth in these provinces. Among them,
three provinces including Beijing, Tianjin, and Shanghai with higher economic level have stepped into a rela-
tively mature stage. Relatively strict household registration policies and population ceiling restrictions of megac-
ities may lead to a slight population increase in these provinces. Differently, in Heilongjiang, Jilin, and Liaoning,
three provinces in northeast China, a series of development problems have occurred on account of the heavy
industrial structure, slow development of the private economy and natural resources depletion, since the reform
and opening up in 1978 (Sun & Wang, 2021). In addition to the urban middle-aged labor forces have continued
to lose recently and the aging population structure has deepened (Yang, 2019), the economic development has
become sluggish and the urban growth vitality has lacked in northeast China. This might explain why urban land
demand continues to decline after a temporary rise in these three provinces. Limited by the natural conditions,
Tibet, on the other hand, has a relatively low urban development level and relatively slow urbanization process,
and thus was less influenced by different scenarios.

For five provinces including Anhui, Guizhou, Guangxi, Yunnan, and Xinjiang, the urban land demand continues
to increase under SSP3 and the urban area within UGBs is much larger than those under other SSP scenarios
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Figure 9. Comparison of simulation results of urban land spatial patterns. Note. (a) Refers to the product from Chen, Li,
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land in pixels. (c) refers to the product from Goldewijk et al. (2017), representing the urban land area in pixels.
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(Figures 2 and 3). These provinces are located in central-western China, with relatively low economic develop-
ment level and relatively high fertility rate. Under SSP3, a regional rivalry scenario, the already higher fertility
rates in these provinces were projected to be further amplified (Chen, Guo, et al., 2020), and thus the number
of newborns will increase rapidly. Meanwhile, the local population was projected to keep rising because of the
relatively low migration rates (Chen et al., 2022). This has led to an increase in urban land demand and contin-
uous urban expansion as the population grows. The continuously rising urban land demand in the six provinces
of Hubei, Hunan, Jiangxi, Henan, Hainan, and Ningxia under SSP3 can also be explained by the above reasons
(Figure 2).

In Jiangsu, Zhejiang, Fujian, Shandong, and Guangdong, the urban area expected to expand within the UGBs was
large and there was no significant difference under five scenarios. But the descent range of urban land demand
thereafter varied with scenarios and was projected to be the largest under SSP4. This can be explained by the
generally lower urban population growth resulting from the population development pattern with low fertility
rates and moderate mortality rates under SSP4 (Chen, Guo, et al., 2020). A similar changing trend was also
observed in six provinces of Chongqing, Hebei, Inner Mongolia, Shanxi, Shaanxi, and Qinghai, but the urban
area expected to expand within UGBS in these provinces was relatively lower. That is because SSP4 is a highly
unequal development pathway within countries, under which the well-developed provinces will develop at a
higher growth rate while the less developed provinces will grow following a constant progression rate (Chen
et al., 2022). The first five provinces were located in eastern China with a relatively higher economic develop-
ment level. Though these five provinces demonstrated with lower fertility rate under SSP4, they can still attract
the migration of population from the provinces with lower socioeconomic development levels through the capi-
tals to achieve population growth (Jiang et al., 2017). In addition to the provinces above, Sichuan also shows a
similar tendency in urban land demand but has a relatively larger urban area expected to expand within UGBs
under each scenario. This can be explained by the fact that, despite being located in the inland of western China,
Sichuan has a relatively strong population base, and the urban expands rapidly with the population growth at the
same time. In particular, the decrease in urban land demand under SSP1 and SSP5 was similar and was larger
than those under other scenarios in Gansu, which can be related to the extremely low interprovincial floating
population in this province (Liu et al., 2015).

4.3. Policy Suggestions

China should take measures to address the pressure of urban shrinkage. The simulation results under five SSPs
indicate that most provinces in China will face urban shrinkage pressure, which will be much higher in the
provinces of Heilongjiang, Jilin, and Liaoning (Figure 5). Measures to address urban shrinkage pressure can be
classified into mitigation and adaptation (Sousa & Pinho, 2015). Measures of mitigation emphasize restoring
urban vitality, revitalizing the urban economy, and promoting the urban population (Yang et al., 2017), market
(Hu et al., 2021), capital (Rocak et al., 2016), and other reflowing factors to realize the regrowth of shrinking
cities (Sousa & Pinho, 2015) when dealing with urban shrinkage. Measures of adaptation do not sidestep the
problems posed by urban shrinkage but regard urban shrinkage as a development pattern equivalent to urban
growth, trying to utilize and optimize the impacts of urban shrinkage. Measures with adaptive characteristics,
including deconstructing (Bontje, 2004), revaluating (Nunes, 2008), reorganizing (Safransky, 2014), and imag-
ining (Long & Wu, 2016), are taken to cope with urban vacant space, adjust urban morphology, and remodel
urban space to promote urban development toward environmental conservation, harmony and diversification
(Haase, Haase, Rink, et al., 2014; Thomas Elmqyvist, 2013). China has currently adjusted family planning poli-
cies to alleviate urban shrinkage pressure (Yang & Dunford, 2018) and has proposed a control and reduction
strategy for the total amount of construction land (Wang et al., 2021), elevating management on construction
land reduction to a national development agenda (The State Council of PRC, 2015). In the future, measures of
adaptation, including transforming inefficient vacant land to urban green space (Haase, Haase, Rink, et al., 2014;
Wu & Li, 2019; Zhang et al., 2017), need to be taken into account to implement urban renewal action, further
improve urban spatial structure and urban functional arrangements and transform the way of urban development
and economic growth (The People's Government of Beijing Municipality, 2021) to mitigate the negative impacts
of urban shrinkage.

The place-based urban expansion mode needs to be chosen in each province to promote urban sustainability. The
evaluation results reveal that the negative impacts of urban expansion on ecosystem services are significantly
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Figure 10. Urban expansion mode corresponding to minimum ecosystem service loss under shared socioeconomic pathway
1 (SSP1). Note. (a) To the loss of habitat quality. (b) To the loss of food production. (c) To the loss of carbon sequestration.

different under the 11 modes (Figure 10). Taking the SSP1 scenario as an example, in 14 provinces, including
Beijing, Tianjin, Jilin, Heilongjiang, Shanghai, Jiangxi, Hunan, Guizhou, Guangdong, Guangxi, Hainan, Jiangsu,
Gansu, and Xinjiang, urban expansion modes dominated by organic growth will result in lower ecosystem service
losses than those dominated by spontaneous growth. A possible explanation might be that more high-quality crop-
land was projected to be invaded as the urban expansion mode shifts from organic growth to spontaneous growth.
The proportion of bare land, rural residential land, and other construction land with lower NPP was projected
to show a downward trend, which indicates that more land use/cover types with higher NPP will be occupied,
leading to more carbon sequestration losses (Li et al., 2018), while the urban expansion modes dominated by
spontaneous growth will result in the dispersion of urban patches, the reduction of patch aggregation and the
fragmentation of habitats (Bao et al., 2015), leading to more severe losses of supporting services (Wu & Li, 2003;
Yang & He, 2006). Thriteen provinces, including Hebei, Henan, Liaoning, Shandong, Zhejiang, Anhui, Hubei,
Sichuan, Fujian, Inner Mongolia, Shanxi, Shaanxi, and Ningxia, will experience fewer losses of food production
and carbon sequestration under the urban expansion modes dominated by organic growth and experience fewer
losses of habitat quality under the urban expansion modes dominated by spontaneous growth. The main reason
was that the cropland proportion of newly developed urban land was projected to exhibit an upward trend, while
the proportions of forest, grassland, and other land use/cover types with high habitat suitability were projected
to show a downward trend as the urban expansion mode shifts from organic growth to spontaneous growth. For
Yunnan and Chongqing, the losses of food production will increase, and the losses of habitat quality and carbon
sequestration will be alleviated as the urban expansion mode shifts from organic growth to spontaneous growth.
The rise in the proportion of cropland and the decline in the proportion of forest will be the main reasons. Except
for the losses of ecosystem services, the impacts of urban expansion modes on urban transportation, energy
consumption, and infrastructure construction differ under diverse urban expansion modes as well (Hortas-Rico &
Solé-0llé, 2010; Johnson et al., 2021). Therefore, the optimal urban expansion mode needs to be determined in
different provinces based on the type of ecosystem service preferentially protected and the differences in the envi-
ronmental, social and economic impacts under diverse urban expansion modes to improve urban sustainability.

4.4. Future Perspectives

Future urban spatial patterns in China were simulated based on the localized SSPs and patch-based LUSD-urban
model, and the UGBs of China in each province were delimited. Based on the delimitation results, the pressure
of urban shrinkage from urban population decline and the possible impacts of future urban expansion on habitat
quality, food production, and carbon sequestration were evaluated, providing scientific evidence for exploring
China's urban development pathways.

Some limitation still needs to be noted. First, this study delimits UGBs based on the process of urban expansion.
Limited by data availability, only the avoidance of high-quality cropland and nature reserves was taken into
consideration, without fully considering the constraints of farmland redlines and ecological redlines on urban
expansion (Jia et al., 2018). Second, in terms of ULD estimation, the urban population was used in this study
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to estimate ULD according to the National New Urbanization Planning (2014-2020) (The State Council of
PRC, 2014) without taking the impacts of economic growth on ULD into account. However, under the require-
ment of high-quality development, ULD will decrease as well after the GDP growth rate stabilizes, consistent
with the estimated trend based on the urban population (Chen, Li, et al., 2020). Then, the seventh national popu-
lation census data (National Bureau of Statistics of PRC, 2021) and the third-child policy (The State Council of
PRC, 2021b) have not been considered in existing localized SSPs, leading to uncertainty in future ULD estima-
tion. Third, in terms of urban spatial pattern simulation, the urban expansion was simulated at a 1-km resolution,
which was lower than that in other studies at the scale of city or urban agglomeration. However, in view of this
nationwide delineation on UGB, this study was not set to depict the UGBs in detail, but to delineate the future
urban boundary roughly under diverse scenarios and urban expansion modes, so as to provide references for
future urban spatial planning. At the same time, although this patch-based urban model mainly used at a relatively
high spatial resolution, it can also simulate the differences in the spatial pattern of urban growth under diverse
expansion modes with a spatial resolution of 1 km (Chen, Li, et al., 2020). In addition, this study does not fully
consider the impacts of future transit construction (e.g., high-speed railways) (Zheng et al., 2012) and the devel-
opment of urban agglomerations (Long et al., 2012) on future urban spatial patterns. Fourth, other driving factors
other than population decline, such as economic depression, were not considered in the estimation of urban
shrinkage pressure. In addition, limited by the large uncertainty on the spatial patterns of urban shrinkage, the
urban shrinkage pressure was failed to be simulated spatially, but was only quantitatively estimated under diverse
scenarios and expansion modes for each province.

In future work, under the premise of publicly released relevant data, we intend to first simulate urban expan-
sion based on farmland redlines and ecological redlines to implement the strictest farmland protection system
in UGB delimitation, ensure the total area of China's cropland to enhance food security (The State Council of
PRC, 2021a) and optimize UGB delimitation combined with existing planning (Ministry of Natural Resources
of PRC, 2020). In terms of ULD estimation, according to the seventh national population census data and the
third-child policy, we will reestimate the future urban population and modify future ULD to more accurately
simulate urban expansion. In terms of urban spatial pattern simulation, we will consider coupling patch-based
urban model and hierarchical modeling strategy to delineate UGBs at a higher spatial resolution (Sun et al., 2020;
Wang et al., 2022). Furthermore, we will fully consider the impacts of transportation and urban agglomeration
development on the urban spatial pattern to optimize the urban expansion model and improve the reliability of the
UGB. Last, we will consider taking other driving factors, such as GDP, into account to more accurately estimate
urban shrinkage pressure. Furthermore, we will consider simulating urban shrinkage spatially to quantify China's
spatial pattern of urban shrinkage pressure in the future.

5. Conclusions

This study simulated China's future urban dynamics and delimited China's UGBs at the provincial level under
five SSPs and 11 modes. Based on the UGB delimitation results, provincial urban shrinkage pressure, occupancy
on other land use/cover types and losses of ecosystem services were calculated, providing scientific evidence for
urban planning in China.

China's ULD from 2021 to 2100 was projected to show an increasing trend followed by a decrease under the five
SSPs. The extent of the UGB was projected to be 121,199-142,982 km?, an increase of 34.14-58.25% compared
with the ULA in 2020. The ULD of China in 2100 was projected to be 20.83-53.41% lower than the extent of
UGBs, facing significant urban shrinkage pressure. Significant differences can be found in the occupancy on
other land use/cover types of urban expansion and the losses of ecosystem services under diverse urban expansion
modes. The changing trend of ULD, the pressure of urban shrinkage, the occupancy on other land use/cover types
and the losses of ecosystem services all differ in different provinces.

Therefore, China, especially the three provinces of Heilongjiang, Jilin and Liaoning, should take measures of
mitigation and adaptation to optimize urban spatial patterns and address urban shrinkage pressure. Optimal urban
expansion modes need to be determined in different provinces based on the type of ecosystem service prefer-
entially protected and the environmental, social, and economic characteristics to improve urban sustainability.
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