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The age-group composition of populations varies considerably across the world,

and obtaining accurate, spatially detailed estimates of numbers of children

under 5 years is important in designing vaccination strategies, educational plan-

ning or maternal healthcare delivery. Traditionally, such estimates are derived

from population censuses, but these can often be unreliable, outdated and of

coarse resolution for resource-poor settings. Focusing on Nigeria, we use nation-

ally representative household surveys and their cluster locations to predict the

proportion of the under-five population in 1 � 1 km using a Bayesian hierarch-

ical spatio-temporal model. Results showed that land cover, travel time to major

settlements, night-time lights and vegetation index were good predictors and

that accounting for fine-scale variation, rather than assuming a uniform pro-

portion of under 5 year olds can result in significant differences in health

metrics. The largest gaps in estimated bednet and vaccination coverage were

in Kano, Katsina and Jigawa. Geolocated household surveys are a valuable

resource for providing detailed, contemporary and regularly updated popu-

lation age-structure data in the absence of recent census data. By combining

these with covariate layers, age-structure maps of unprecedented detail can be

produced to guide the targeting of interventions in resource-poor settings.
1. Background
Age is an important demographic variable that affects disease burden estima-

tes [1] and mortality [2]. Defining the extent of public health need for specific

age-groups and its distribution in space and time are critical to support interven-

tions to combat disease burden, and plan and manage resources effectively. This

includes interventions such as vaccination [3], insecticide-treated bednets (ITNs)

for malaria as well as the delivery of healthcare to underserved populations [4].

Moreover, the production of health metrics [5,6] and spatial models of processes

influenced by demographics [7,8] are increasingly reliant on spatial data on popu-

lation age-structures. To support such efforts, quantitative information on the

numbers or proportions of age-groups of interest in space and time is needed

because these can vary significantly within and across countries.

Current methods of estimating population age-structures rely on census data.

However, in most countries, population censuses are conducted every 10 years at

best, and longer in many low-income countries. For example, the last population

censuses conducted in the Democratic Republic of Congo, Somalia and Myanmar

were in 1984, 1987 and 1983, respectively. Thus, census data can often be out-

dated, unreliable and provided at coarse spatial resolution [9], and estimates

between censuses may not be accurate owing to changes such as migration that

can be difficult to account for [10]. This makes it challenging for many government
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agencies and intervention programmes to use these data for effi-

cient planning and delivery. Previous research that focused on

quantifying progress towards development and health goals

has often relied on simple national-level adjustments to obtain

distribution maps of key denominator groups [11–13]. Detailed

information on the distribution of age-structured population

in space and time could therefore help optimize intervention

planning, improve the measurement of key development and

health indicators and produce spatial models that are reliant

on demographics.

The past decade has seen marked growth in the regular

implementation of national household surveys to provide

important development and health measurements in the

absence of reliable national reporting systems. There has also

been an increase in the use of global positioning systems

(GPS) in such surveys to enable the geo-referencing of

information collected. These surveys, for example the demo-

graphic health surveys (DHS) [14], malaria indicator surveys

(MIS) [15], living standard measurement surveys (LSMS) [16]

and the multiple indicator cluster surveys [17], provide infor-

mation on various demographic and health indicators

between different low-income countries and across time. More-

over, the provision of GPS cluster centroid locations has enabled

fine spatial resolution disease and poverty mapping using

model-based geostatistical (MBG) approaches [18–21]. Such

data therefore provide an opportunity to achieve more spatially

detailed, accurate and regular estimates of age proportions to

support the delivery of interventions, improve the precision of

health and development metrics, and provide valuable base

layers for spatial models.

Here, we demonstrate the fine resolution mapping of the

under 5 years of age population proportions in Nigeria using

three nationally representative surveys conducted between

2008 and 2010. The aim was not only to provide contempor-

ary and spatially detailed 1 � 1 km grid cell estimates of the

distribution of the population under the age of 5 years in

2010, but also to produce robust estimates of uncertainty

around predictions. The outputs were compared with exist-

ing approaches for the production of age distribution

spatial data. In addition, the differences obtained in using

these existing approaches versus the household survey-

derived estimates produced here for measuring the size of

populations covered by ITNs and childhood vaccinations

were explored.
2. Methods
2.1. Nigeria context
The study focused on Nigeria, the most populous country in

Africa. It ranks as 153 of 182 countries on the human development

index [22]. Like other countries in sub-Saharan Africa, Nigeria con-

tinues to experience high population growth at an average annual

rate of 3.2% and is uncertain about achieving several of the millen-

nium development goals (MDGs) [23]. Despite an improvement in

gross domestic product [24], the majority of the population still

live on less than US$1.25 per day and child mortality indicators

are still short of the MDG targets with under-five mortality at

128 per 1000 live births (MDG target is 64 per 1000 live births)

and infant mortality at 69 per 1000 live births (the MDG target is

30 per 1000 live births) [25]. Approximately 29% of children

under the age of 5 years use ITNs [26]. The child health and nutri-

tion indicators show that at least 25% of children were immunized

(BCG, measles, DPT and Polio) in the first 2 years of life which
indicates an increase of approximately 13% since the 2003 DHS

[27]. Currently, the planning of vaccination strategies and needs,

e.g. polio in the north of the country, is often based upon popu-

lation counts projected forward using national growth rates from

the 2006 census, and then an assumption of a uniform 20% of

the population being under 5 years of age is used to adjust these

totals to obtain subnational numbers.
2.2. Data
Data on the proportion of the population that is under 5 years of

age were obtained from three nationally representative household

surveys of Nigeria, namely the 2008 DHS [28], the 2010 MIS [26]

and the 2010 LSMS-ISA panel [29]. These nation-wide cross-

sectional surveys include modules enumerating the de facto
members of the household. A household refers to a person or

group of people related or unrelated that usually lives together

in the same dwelling unit. The 2006 Nigeria household and popu-

lation census provided the sampling frame for all the surveys. In

each survey, a stratified two-stage sampling design was adopted

where at the first stage clusters (census enumeration areas, EAs)

were selected and stratified by urban and rural status. At the

second stage, a random sample of households was selected from

a household listing within the selected cluster [30]. Sampling

was based on proportion-to-population size at the cluster-

level such that the number of households varied in each state.

Geographical locations of the selected cluster centroids in each

survey were calculated. For all the surveys, a cluster centroid geo-

location displacement was introduced at the processing stage to

anonymize the cluster location. This was up to 5 km in rural

areas and up to 2 km in urban areas, with a further 1% of rural

clusters displaced up to 10 km [30]. Urban areas in Nigeria are offi-

cially defined based on settlements with populations of more than

20 000 [31]. The response data used in our analysis consist of clus-

ter-level proportions of children less than 5 years old, calculated

across all households in a cluster.

A spatial database combining the three surveys was established.

Each record (n ¼ 1624) was linked to administrative divisions,

dates of survey and household population. Basic checks were

applied to the merged dataset to investigate possible errors. For

example, a consistency check was applied to the total population

column in comparison with the respective age-structured columns.

Geographical coordinates were checked by comparing the repor-

ted survey locations (administrative boundary) and actual map

positions. Figure 1a shows the cluster locations coloured according

to the proportions of under-fives, which exhibit spatial structure, as

evidenced by the covariance function in figure 1b, which measures

the spatial dependence.
2.3. Assembling plausible covariates for mapping the
proportion of the population under 5 years

Predicting the under-five population proportions at locations

without survey data requires exploiting both the spatial covariance

structure in the survey data (figure 1a,b) and the relationships

with covariates. Several socio-economic, physical (topographic,

climatic and environmental) and political factors are associated

with the varying distributions of demographics [21,32]. These

factors affect (directly or indirectly) the distribution and growth

of population. Favourable covariates that are available widely

and measured consistently for modelling population are therefore

land use or land cover, urbanization, vegetation indices, climatic

conditions and socio-economic indicators [32,33]. However, these

do not always correspond spatially or temporally to the respective

dates of surveys. Thus, in this case, we assembled long-term means

representing the climatic or environmental variables. Other covari-

ates were derived from ancillary vector and raster datasets such as
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Figure 1. (a) The distribution of cluster-level data from the national representative household surveys (the DHS, MIS and LSMS-AIS) and (b) the associated covari-
ance function from SPDE (black dots) for the data (n ¼ 1624) with superimposed theoretical Matérn model (red line) showing only slight deviation beyond 550 km
(or 58). The x-axis shows the distance in degrees latitude and longitude, whereas the y-axis shows the covariance with scaling parameter
log(k) ¼ 20.47(21.07 2 20.46) (confidence interval) and smoothing parameter log(t) ¼ 2.85(2.42 – 2.85). The model calculated nominal range of influence
on the x-axis was approximately 535 km. (Online version in colour.)
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distance to roads, or major urban areas (a summary of assembled

covariates is provided in the supplementary material).

2.4. Selecting a suitable set of covariates
The objective was to build a spatio-temporal model that uses a suit-

able combination of covariates to predict the proportion of

population under 5 years at a fine spatial resolution. A two-stage

process was used to arrive at a suitable model combination that

best predicts the under-five population. First, covariates were

selected via a non-spatial generalized linear regression model

(glm) approach to identify suitable predictor variables (that are

fewest in number and easily interpretable, with a predetermined

relationship with the response variable [34]). Second, the selected

set of covariates were then used in the Bayesian approach.

The use of many covariates may result in over-fitting

especially where the data assembled are from observational

studies based on different study designs, sampling consider-

ations and sample sizes which are then combined to describe a

random process [35]. Preliminary model selection of covariates

that best describes the response is a widely accepted exercise in

statistical modelling [34].

The choice of covariates should be guided by the principle of

parsimony. There are several proposed approaches as reviewed

by Murtaugh [34] including the widely criticized stepwise pro-

cedures (see [36,37] and references therein). Subset selection

based on a statistical criterion, such as the Akaike information

criterion, is the most commonly used in statistical modelling.

Such criterion methods penalize model deviance (i.e. minus

twice the log-likelihood) [38].

Covariate selection was implemented in the bestglm package in

R using the leap algorithm [38]. Thus, a glm model with lowest

Bayesian information criterion (BIC) was selected after covariates

were regressed against the proportion of under-fives. In the BIC

criterion, a uniform prior is usually imposed on all possible models.

2.5. Modelling the population proportion under five
using model-based geostatistics

The application of geostatistics in environmental applications is

well established, but little work has been undertaken in population

distribution modelling. Early geostatistical applications were in
geology and mining, although other applications can be found

in a variety of disciplines [39,40]. These classical methods have

developed rapidly since the 1960s in line with the emergence of

statistical computer packages that can readily implement models.

The geostatistical approaches exploit the spatial and temporal

covariance in the data and relationships to covariates to generate

posterior estimates while at the same time estimating uncertainty

around these estimates [41].

The theory of regionalized variables, underlying geostatistics,

allows each observation to be treated as being drawn from a distri-

bution (usually Gaussian) that has a spatial extent, thereby

extending the concept of a random variable Z to that of a

random function (RF) Zu of space u. Thus, the RF Zu can have a

series of outcomes (realizations) in space and relate to another

point at a different location based on a function of distance (gener-

ally Euclidean distance) [42,43]. The RF has first-order stationarity

if for any set n � 1, the distribution of (z(u1), . . . ,z(un)) is equal to

that of (z(u1 þ h), . . . ,z(un þ h)), where h is the lag vector in the

two-dimensional spatial domain D , R2 [42,44,45]. For spatio-

temporal models, the joint space–time formulation requires

observations in space and time, based on RF Z(s, t)[D � T
(where D is the spatial domain and T is the temporal domain),

separated by lag vector (h, t), where h ¼ s 2 s0 and t ¼ t 2 t0

refer to spatial and temporal lags, respectively [46].

Space–time geostatistical formulations with large datasets

often result in the big n problem where estimating the covariance

structure is of order O(n3) [47]. Here, the posterior approximations

were produced using the integrated nested Laplace approxi-

mations (INLA) for latent Gaussian models [48,49]. INLA is

faster computationally compared with Markov chain Monte

Carlo algorithms that use sampling algorithms such as the Gibbs

sampler or Metropolis–Hastings.

The outcome variable was the proportion of the under-five

population, which was unevenly distributed in space and time.

The methodology used data at known cluster centroid locations

(geo-referenced using GPS), survey date, together with the selected

set of covariates that aim to predict the proportion of the population

that is under 5 years. The data and spatially matched covariates

were then used in a Bayesian hierarchical spatio-temporal model,

implemented through a stochastic partial differential equations

(SPDE) approach with INLA for inference, to produce continuous

maps of the estimated proportion of the population that is under



Table 1. Bayesian model specification based on covariates selected using
non-spatial generalized regression.

accessibility
index
(maximum)

EVI
(mean)

land
cover

night-time
lights

model 1 x x x

model 2 x x x x

model 3 x x x

model 4 x x x

model 5 x x x
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5 years old in each 1 � 1 km grid square in Nigeria. Table 1 shows

the various model specifications based on different combinations of

the selected covariates.

In the SPDE method, a Gaussian process model with Gaussian

likelihood and link identity based on the linear predictor of pro-

portion of the population that is under 5 years old was

represented as a realization of a spatio-temporal process of the out-

come variable at each cluster location, time of survey, covariates

and measurement error defined by Gaussian white noise. The

resulting space–time covariance matrix from the spatial and tem-

poral domains informs the spatial range and temporal lag of the

prediction model, so that observations have decreasing effects on

the predictions with more separation in space and time.

In the SPDE approach, a continuous domain Gaussian random

field (GF) was represented as a Gaussian Markov random field

(GMRF). GMRFs result in sparse covariance matrices that are

computationally faster. In this analysis, an SPDE with a statio-

nary Matérn covariance was used. This model was applied to

produce continuous predictions of the proportion of the popu-

lation under the age of 5 years at 1 � 1 km spatial resolution

for 2010 (full detail of model specification in the electronic

supplementary material).

2.6. Model validation
Model selection was undertaken by comparing the deviance

information criterion (DIC) and marginal likelihood of different

models [50]. Validation was implemented in two steps. First,

internal model validation was implemented by assessing cali-

bration using a leave-one-out cross-validation approach [51].

The conditional predictive ordinate, which is the probability of

observing a value given all other data, was examined for all obser-

vations [48]. Second, an external model validation procedure was

applied based on a 10% subset of the data (n ¼ 162). Predictions

were made at validation locations and compared with the obser-

vations. The Pearson’s product–moment correlation coefficient

was computed to quantify the linear relations between observed

and predicted values alongside the mean prediction error (MPE),

mean absolute error (MAE) and root mean squared error (RMSE).

The last two quantities assess bias and accuracy, respectively.

2.7. Application and comparison with existing
approaches

The application focus was on two intervention needs, namely the

distribution of ITNs for malaria prevention (see electronic sup-

plementary material) and coverage of basic vaccination for

childhood diseases. The posterior predictions of under 5 years of

age proportions were multiplied with Nigeria population maps

from the WorldPop project [21] to estimate the under-five popu-

lation at 1 � 1 km spatial resolution and the 95% credible

intervals for 2010. A separate similar analysis using the WorldPop
estimate was repeated using the census estimates [31] (projected

using the intercensual growth rate) and the UN under 5% estimate

(medium scenario, 17.5%) [52] to extract two other under-five

population maps that match with previous widely used deri-

vations. Thus, the three under 5 years old population estimates

(from MBG, census and the UN) were all derived from the same

WorldPop estimate, meaning that differences in totals were

solely attributable to the methods for estimating the under-five

proportion, rather than overall population distribution or num-

bers. A similar approach was used to estimate intervention

coverage on malaria prevention using ITNs based on the 2010

MIS and on the basic vaccination from the 2008 DHS. Basic vacci-

nation, defined as one BCG vaccine against TB; three doses of DPT

vaccine to prevent diphtheria, pertussis and tetanus (DPT); at least

three doses of polio vaccine and one dose of measles vaccine, was

assessed for children aged 12–23 months. Small area estimation

approaches [53] were used in the analysis of the coverage of these

interventions (population protected) at state (administrative 1)

level (see the electronic supplementary material). Finally, the absol-

ute and percentage differences in intervention coverage estimates

between the census, the UN and the MBG-based approaches were

summarized at state level to explore the scale of differences achiev-

able through accounting for subnational population heterogeneities

and the use of more contemporary data.
3. Results
3.1. Data summary
A summary of the assembled data from the three household

surveys is provided in the electronic supplementary material.

In total, 1624 unique clusters were assembled, and overall,

the under-five population constituted the largest proportion

of the survey (electronic supplementary material). The BIC

approach yielded the following covariates: accessibility,

night-time lights, land cover and enhanced vegetation index

(EVI) as predictors of the proportion of those under the age

of 5 years. A further exploratory analysis showed that some

selected variables had a negative correlation (electronic

supplementary material).

3.2. Model results
There was minimal difference between the three spatio-temporal

models based on the DIC and the marginal likelihood (table 2).

We elected to use model 2 (table 2) based on the DIC-marginal

likelihood combination compared with the other four models.

The prediction ability was assessed using the MAE as well

as an assessment of prediction performance based on the 10%

validation sample. The MPE for the model was very small

(20.00001), whereas the MAE was 0.03 and the RMSE was

0.04 (table 2). This indicated the average tendency to over-predict

by 0.03. Pearson’s correlation between observations and predic-

tions was 0.63, and the corresponding scatterplot between the

observations and predictions is shown in figure 2a. The analysis

of residuals showed minimal autocorrelation as depicted in

the semi-variogram of the residuals in figure 2b, indicating

that most of the spatial structure was accounted for during the

modelling exercise.

Table 3 shows the posterior distribution of the fitted model

parameters including the fixed effects and random effects. The

posterior mean of the intercept was 0.1815, showing that

the overall predicted percentage of under-five population

was approximately 18% before accounting for the various cov-

ariate effects. For accessibility, night-time lights and EVI, the
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Table 2. Bayesian spatio-temporal model comparisons for the under-five population based on selected parameters and validation statistics. DIC, deviance
information criteria; PD, number of effective parameter of the model; MPE, mean prediction error; RMSE, root mean square error.

DIC PD marginal likelihood MPE MAE RMSE correlation

model 1 24717.23 79.19 2271.73 20.000013 0.0327 0.0427 0.6320

model 2 24685.44 72.70 2254.245 20.000014 0.0323 0.0424 0.6345

model 3 24717.66 77.80 2272.611 20.000017 0.0311 0.0408 0.6865

model 4 24686.44 73.08 2261.950 20.000012 0.0337 0.0436 0.6064

model 5 24686.28 72.56 2262.600 20.000013 0.0334 0.0434 0.6135

Table 3. Posterior distribution (mean, standard deviation and quantiles) of parameters for model 2.

parameter mean standard deviation 5% 50% 95%

intercept 0.1815 0.014 0.1593 0.1812 0.2047

accessibility index (maximum) 0.0044 0.0019 0.0013 0.0044 0.0076

EVI (mean) 20.0045 0.0025 20.0086 20.0045 20.0003

land cover 20.0035 0.0024 20.0076 20.0035 0.0005

night-time lights 0.0016 0.0023 20.0022 0.0016 0.0051

rho (time process) parameter (r) 20.4699 0.3597 21.072 20.4636 0.1137

measurement error parameter 0.0022 0.0001 0.0021 0.0022 0.0024

the marginal variance 0.0007 0.0003 0.0003 0.0007 0.0014

model range (km) 534.6865 198.1813 280.5734 497.7561 911.8705
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marginal variance and the nugget were significant at the 95%

credible interval, which confirmed the importance of these

variables and parameters in prediction. The nugget effect

was very small at 0.002 and the marginal variance from the

Matérn covariance was also small (0.0007).

3.3. Predicted under-five proportions and comparison
with existing estimates

Figure 3a shows the predicted proportions of the population

under 5 years of age per 1 by 1 km grid cell from the geostatistical
modelling, whereas figure 3b shows the difference between the

upper and lower limits of prediction, highlighting the varying

levels of uncertainty in the prediction outputs. In general,

southern Nigeria showed lower proportions of children under

the age of 5 years compared with the northern regions. For

example, Kano, Katsina and Kaduna states had some of the high-

est proportions less than 5 years. Figure 4 shows a comparison of

the percentage of the population under 5 years by state in Nigeria

based on the three different estimates generated from adjust-

ments of a total population gridded estimate using the MBG

approach, UN national estimates and estimates derived from
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the 2006 census at state level. There were differences in subna-

tional estimates generated depending on the approach used.

The triangles in figure 4 are based on simple adjustment of popu-

lation totals using the national-level UN estimate of 17.5% under

the age of 5 years, i.e. not accounting for subnational variation (as

undertaken in, for example, [11–13,54–57]). Significant subna-

tional variation is, however, apparent when using either the

2006 census data (black circles) or the estimates produced by

the MBG approach outlined here (in red), with some estimates

below 12% and others over 20%.
3.4. Comparison of insecticide-treated bednets and
vaccination coverage estimate variations

The effects of the above variation can be seen in the production

of intervention coverage estimates at a national level. The 2008

DHS showed that about 39.7% of children between 12 and
23 months received basic vaccination in Nigeria (i.e. 60.3% of

children not vaccinated) with higher rates of coverage in the

south. Maps of vaccination coverage are included in §4 of the

electronic supplementary material. Figure 5 shows a compari-

son of the number of children not vaccinated by state based on

the MBG estimates developed here, in comparison with the UN

or the census-derived under-five population datasets. The

widest gap in vaccination was in Kano, Katsina and Jigawa.

Similar results were obtained for children not using ITNs

(figure 6). This variation suggests that accounting for fine-

spatial resolution subnational variation can produce sizeable

differences in estimated metrics.
4. Discussion
This study used data from three household surveys in Nigeria

to quantify the proportion of population under the age of 5
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years using a Bayesian hierarchical spatio-temporal model.

The survey data show that considerable subnational variation

in the population age-structure exists. Much recent and influ-

ential research on global disease burden [12], estimating

MDG indicators [11,57], quantifying populations at risk

[13,54,55] or mapping interventions [58], has been limited

to simply using a national-level adjustment of population

estimates to represent age-structures in the absence of more

accurate, spatially detailed and reliable data. Results from

this study suggest that detailed and contemporary depictions

of population age-structures can be produced from survey
data and mapped at fine spatial resolution. The fine spatial

resolution estimates are simpler to integrate with gridded popu-

lation total estimates that are commonly produced at the same

spatial resolutions [9,21] and can be summarized readily to

policy-relevant administrative units for planning, decision-

making and resource allocation. Second, these contemporary

estimates of population age-structures can be produced without

reliance on census data that can be outdated and unreliable in

many countries, and with quantification of uncertainty. More-

over, the use of covariates not only enhances the scientific

understanding of associations with potential driving factors of
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population age-structures, but can also be applied in other

countries because of their wide and consistent coverage. In this

study, land cover, night-time lights, accessibility and a veg-

etation index emerged as important covariates over more

societal-based indicators (electronic supplementary material),

with each either directly acting on, or acting as a surrogate for,

factors influencing population age-structures. Moreover, the

quantification of uncertainty here has additional advantages in

guiding the positioning of future surveys to optimize mapping

accuracy and hence enhance understanding of age-structures.

Age is a central variable in the fields of development, huma-

nitarian response, epidemiology and public health. Certain

age groups are more vulnerable to economic fluctuations [59],

conflicts [60] and natural disasters [61], whereas health events

vary with age [62]. The international development agenda in

the past two decades has been shaped by two themes. The

first on achieving the eight MDGs by 2015 [63]. The second

on achieving the upcoming sustainable development goals

(SDGs) focusing on sustainable cities and human settlements,

climate change, societal protection and biodiversity among

other numerous goals [64]. Mapping has increasingly been

used in estimating indicators [5,65], assessing progress on

some of these goals [58,66], as a basis for spatial modelling

[67–69], and shaping policy on health and development

[33,68]. However, despite major advances in the mapping of

the prevalence of development metrics and health outcomes,

many applications in the most resource-poor settings still rely

on national-level estimates of age proportions from the UN

(or other producers of demographic statistics), or outdated

census data of coarse spatial resolution, to provide denomi-

nators for conversion of prevalence estimates to numbers at

risk [13,54]. To support health and development modelling

efforts, government assessments of need, and measuring pro-

gress towards meeting the MDGs and SDG targets requires

reliable and contemporary spatial baseline data on the popu-

lation and its age-structure to construct relevant policies as

well as estimate outcomes accurately. GPS-located national

household survey data provide a valuable new source of subna-

tional demographic information that is more readily and

regularly available than census-based estimates, and has the

potential to be integrated with census data, where complimen-

tary data features exist. Here, we have shown how such

geolocated survey cluster data can be used to build contempor-

ary and detailed datasets on population age-structures with full

quantification of model-based estimates of uncertainty.

Many government programmes, multilateral and bilateral

agencies require disaggregated estimates with associated con-

fidence intervals for budgeting and planning purposes [70].

An important finding here suggests that the current practice

in many applications of using national-level age proportion

metrics likely under-predicts the proportion of the popula-

tion under the age of 5 years substantially in the most

poor and highly burdened populations. For example, there

were substantial differences in the intervention coverage

metrics when estimated using the fine spatial resolution

model-based approach compared with use of census or

national-level estimates. While coverage of interventions can

differ substantially between urban and rural populations

[71], the large differences in under-five age-structure esti-

mates can result in under-estimation or over-estimation of

needs. This also applies to other sectors, such as development

or economic indicators and disaster relief where these metrics

are required and used widely. While we have focused here
on estimation of the denominator, measurement of the

numerator is equally important in arriving at accurate cover-

age estimates. In some settings, the quality of the data on the

numerator or scarcity of it makes the numerator the factor

contributing the greatest uncertainty to coverage estimates,

whereas in other settings, the opposite is true.

Some limitations remain, however. First, we had no con-

trol over data coverage and content errors given that these

were managed from different systems. Such errors relate to

misclassification in household data or covariates such as

land cover, and recording and data entry errors. While the

model performance was satisfactory, some sources of errors

contributed to model uncertainty, and unexplained variance

remains. For instance, inherent in the DHS and LSMS data

are the displacements of cluster locations for protection of

respondent population anonymity [72], and this may result

in two types of errors. The first may result in incorrectly link-

ing the covariate to age-structure owing to mismatch between

the scale of displacement and covariate spatial resolution. We

mitigated this error source by defining buffers around the

survey locations during covariate extraction, which also

theoretically improved the spatial representation of a cluster.

In urban areas, in addition to the displacement issue,

covariates available at a national level do not measure

within-urban variability well. For the second problem, this

meant that urban areas were generally predicted with the

same homogeneous values, rather than being able to discern

within-city variation. Upcoming data products, such as the

human settlement layer from the Joint Research Centre

(JRC) [73], may mean that within-city variation can be

better represented in the future, and ongoing work is explor-

ing the effects of cluster displacement and refined covariate

layers. We mainly used cross-sectional rather than used longi-

tudinal data here, with the latter being more advantageous for

tracking change over time. Although the modelling set-up

accounted for different survey dates, this was not sufficient

to be able to interpret the nature of time-series patterns impact-

ing on population as indicated by the AR(1) r coefficient. The

LSMS-ISA repeated survey of 2013 was longitudinal in

design. However, a critical evaluation between the data used

here and the follow-up survey did not show a significant

change in demographic pattern to alter the distribution pre-

dicted here. Moreover, the sample sizes used in the LSMS-

ISA were smaller when compared with the DHS. There still

exists a lack of approaches for handling cluster weights in the

type of model-based approach used here. However, first,

there was minimum difference in the DIC (24695.50) or

marginal likelihood (2248.18) when cluster weights were incor-

porated as random effects compared with current results (table

2). Second, with the approach outlined here, the Gaussian

white noise specified in the SPDE approach adds extra parame-

trization to the realizations of the unobserved levels of the

proportions of the population. The space–time covariance

matrix informed the spatial range and temporal lag of the pre-

dictions. Outside of the spatial and temporal range, the

autocorrelation of the data becomes almost null. Lastly, there

is a potential error introduced as a result of mismatch in

the date of the survey and covariates. Long-term annual

means were used for covariates, because most are not usually

produced on a monthly basis or even annually.

The work presented here demonstrates the value of

the combination of geolocated household survey data with

spatial covariates in a Bayesian geostatistical framework for



rsif.royalsocietypublishing.org
J.R.Soc.Interface

12:20150073

9
improving the quantification of the under 5 years of age pro-

portion distributions in resource-poor settings where

alternative reliable and contemporary data are unavailable,

and points the way to a range of future innovations. First, the

extension of this work through multinomial methods should

enable the prediction and mapping of full population

age-structures. Moreover, the linkage with increasingly

sophisticated approaches for the fine-resolution mapping of

population counts [74,75], will enable more accurate and con-

temporary estimates of total numbers at risk, particularly

using approaches based on ‘bottom-up’ methods that use

settlement extraction from fine spatial resolution satellite

sensor imagery to estimate population sizes directly in the

absence of census data. With geolocated household surveys

measuring age-structures now being undertaken regularly,

particularly in the most resource-poor countries, the potential

also exists to undertake regular updates and monitor change

at a global scale—something that has not previously been poss-

ible using decadal census data. Finally, the potential exists for

the construction of hybrid approaches that can integrate the

more regularly undertaken national household survey data

with population census data, where reliable and recent data

exist, and even novel data sources, such as mobile phone call

data records, which have shown potential in demographic

mapping [76].

A rising international focus on inequalities and the map-

ping of health and development indicators in the poorest

parts of the world requires a strong evidence base with explicit

quantification of uncertainties to ensure that data deficiencies
are communicated effectively. In many low-income countries,

we still have a poor understanding of the numbers, distri-

butions and demographics of populations [9] and geolocated

national household surveys are helping to improve this situ-

ation. The approaches outlined here make use of these data

to provide robust estimates in unsampled locations and pro-

vide valuable data on key population groups, capturing the

substantial demographic variabilities that can translate into

improved health and development metrics.
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