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ABSTRACT

Identification of arc magmatic rock as-
sociations in a subduction zone has impor-
tant implications for specifically revealing 
the geodynamic evolution of the subduction 
system. The closure time of the Bangong-
Nujiang Tethyan Ocean and the detailed 
subduction processes have been hotly de-
bated, hindering our understanding of the 
tectonic evolution of central Tibet. Here, we 
investigated the ca. 110–104 Ma Gerze lavas 
(basalts, basaltic andesites, andesites, dacites, 
and rhyolites) in southern Qiangtang. Fusion 
of slab fluid-metasomatized mantle wedge 
could yield the basalts, and such basaltic 
magmas, if contaminated with ancient base-
ment orthogneisses, could have formed the 
andesites. The basaltic andesites with high 
Nb and Nb/La are similar to the Nb-enriched 
arc basalts and probably originated from 
slab melt-metasomatized mantle. The dacites 
were generated by fractional crystallization 
of the subducted mélange-derived intermedi-
ate magmas. The rhyolites have geochemical 
characteristics (high SiO2 and La/Yb; low 
MgO and Sr/Y) similar to those of Jamaican-
type adakites and were possibly sourced from 
the subducted oceanic plateau at low pres-
sures. The Gerze Jamaican-type adakites and 
Nb-enriched basalt association could imply 
intense slab-mantle interactions. The Gerze 
lava suites show clear arc affinities, indicat-

ing that oceanic subduction may have lasted 
until 100  Ma. Based on previous studies 
and a noticeable ca. 145–125 Ma magmatic 
lull in southern Qiangtang, we suggest that 
the Bangong-Nujiang oceanic subduction 
geodynamics involved normal subduction 
(170–145 Ma), flat subduction (145–125 Ma), 
and slab roll-back (125–101 Ma). Moreover, 
the flat subduction was most likely caused by 
subduction of the oceanic plateau. Therefore, 
we propose, for the first time, that Tethyan 
oceanic plateau subduction during the Early 
Cretaceous could explain the tectonic evolu-
tion of the Bangong-Nujiang Ocean and dis-
tinctive magmatism in southern Qiangtang, 
central Tibet.

INTRODUCTION

Subduction zones are important regions on 
Earth where substantial crustal materials can be 
incorporated into the mantle. During this recy-
cling process, intense arc magmatism can occur 
by partial melting of the subducted slab, the slab 
fluid- or melt-metasomatized mantle wedge, 
and the overlying crust (Pearce and Peate, 1995; 
Castillo et al., 2002). Variable subduction pro-
cesses can induce distinct magmatic rock as-
sociations. For example, A-type granites and 
intraplate-type basalts are often produced dur-
ing ridge subduction and slab break-off (Tang et 
al., 2010). Flat slab subduction and subsequent 
roll-back induce a magmatic lull and ensuing 
magmatic flare-up, respectively (Gutscher et al., 
2000). These special subduction cases are likely 
responsible for generation of slab-derived ada-
kites, which can drastically change the magma 
genesis from typical fluid-related calc-alkaline 

magmatism in normal arcs to melt-related 
magmatism (adakite–high-Mg andesite–Nb-
enriched basalt; Bourdon et al., 2003). Thus, 
identification of arc magmatic rock associations 
in a subduction zone has important implications 
for specifically revealing the geodynamic evolu-
tion of the subduction system.

The Bangong-Nujiang suture zone, represent-
ing a remnant of the Bangong-Nujiang Tethyan 
Ocean, is located in the central Tibetan Plateau 
and is a significant Tethyan suture that sepa-
rates the southern Qiangtang block in the north 
from the Lhasa block in the south (e.g., Yin and 
Harrison, 2000). The evolution of the Bangong-
Nujiang Ocean could strongly constrain the Me-
sozoic tectonic history of central Tibet, where 
substantial metallogenesis has recently been 
reported (Geng et al., 2016). Numerous studies 
have suggested that Mesozoic magmatism in 
southern Qiangtang should be attributed to the 
northward subduction of the Bangong-Nujiang 
Ocean and ensuing Lhasa-Qiangtang collision 
(e.g., J.X. Li et al., 2014; Zhang et al., 2012; 
Y.X. Zhang et al., 2017). However, the timing of 
closure of the Bangong-Nujiang Ocean remains 
controversial, and, accordingly, the subduction 
geodynamics have been hotly debated (e.g., Zhu 
et al., 2016), greatly hindering our understand-
ing of the tectonic evolution of central Tibet.

Two main closure ages of the Bangong-
Nujiang Ocean have been suggested: the late 
Early Cretaceous (ca.  100 Ma, e.g., Wang et 
al., 2016; K.J. Zhang et al., 2012, 2014; Y.X. 
Zhang et al., 2017; Zhu et al., 2006; J.X. Li et 
al., 2014; Fan et al., 2015) and the Late Juras-
sic (ca. 160–145 Ma, e.g., Li et al., 2017; Kapp 
et al., 2007; Zhang, 2004; Zhang et al., 2004; 
Zhu et al., 2016). For instance, in recent years, 
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several exposures of Early Cretaceous oceanic 
basaltic rocks have been identified within the 
Bangong-Nujiang suture zone, and the oceanic 
basalts and related sedimentary rocks have 
been widely interpreted as parts of ophiolites 
and may imply that the Bangong-Nujiang 
Ocean could have survived until the Late Creta-
ceous (ca. 100 Ma; e.g., Bao et al., 2007; Wang 
et al., 2016; K.J. Zhang et al., 2012, 2014). 
This is consistent with broad paleomagnetic 
investigations across the Bangong-Nujiang 
suture zone (e.g., Otofuji et al., 2007; Tong 
et al., 2015; Song et al., 2017). However, Zhu 
et al. (2016) suggested that these Cretaceous 
basalts were possibly derived from melting of 
the asthenosphere during oceanic lithospheric 
break-off and are not indicative of the oceanic 
crust. Some authors have favored a Late Juras-
sic closure time, mainly based on sedimentary 
or structural deformation studies (e.g., Li et al., 
2017; Kapp et al., 2007; Huang et al., 2017; 
Zhang, 2004; Zhang et al., 2004;  Ma et al., 
2017). However, Guynn et al. (2006), based 
on the record of metamorphism, suggested that 
such a Jurassic closure event may just imply a 
collision between southern Qiangtang and an-
other microcontinent rather than Lhasa-Qiang-
tang collision. In addition, the Bangong-Nuji-
ang Ocean could have closed in a clockwise 
fashion from the Jurassic to Cretaceous, also 
based on studies of the regional metamorphism 
(Zhang et al., 2008) and paleomagnetism (Yan 
et al., 2016).

Here, we suggest that ascertaining whether 
oceanic subduction occurred during the Early 
Cretaceous is relevant to constraining the oce-
anic closure time. Arc-related magmatic rocks 
in a subduction setting, especially mafic rocks, 
have distinctive geochemical properties that 
distinguish them from those of other tectonic 
settings (e.g., Pearce and Peate, 1995). There-
fore, we can potentially unveil the evolution of 
a subduction zone by identifying the arc rock 
associations.

However, due to the rare occurrence of Meso-
zoic mafic rocks in southern Qiangtang, previous 
studies have mainly focused on intermediate- 
felsic rocks (e.g., Hao et al., 2016a, 2016b; J.X. 
Li et al., 2014), which are not sensitive to the 
tectonic settings and thus may not provide solid 
and convincing evidence for arc magmatism, 
given that they may have their original distinc-
tive tectonic settings obfuscated by fractional 
crystallization, mixing, and contamination 
processes or their arc geochemical character-
istics may just be inherited from their crustal 
source rocks.

In this paper, we present new zircon U-Pb 
ages and Hf isotopic data, whole-rock major- 
and trace-element geochemical data, Sr-Nd-Hf 

isotopic compositions, and mineral geochem-
istry for the Gerze lavas, which contain basalt, 
basaltic andesite, andesite, dacite, and rhyolite, 
for a better understanding of the evolution of the 
Bangong-Nujiang Ocean. The results clearly 
show the arc affinities of the Early Cretaceous 
Gerze lavas, indicating that oceanic subduc-
tion may have lasted at least until ca. 100 Ma. 
Moreover, subduction of the Tethyan oceanic 
plateau during the Early Cretaceous is proposed 
for the first time to explain the evolution of the 
Bangong-Nujiang Ocean and the distinctive 
magmatism in southern Qiangtang.

GEOLOGIC SETTINGS AND 
PETROGRAPHIC CHARACTERISTICS

The Tibetan Plateau consists of the Songpan-
Ganzi, northern Qiangtang, southern Qiang-
tang, Lhasa, and Himalaya blocks, from north 
to south (Fig. 1A; e.g., Yin and Harrison, 2000). 
These five blocks are separated by the Jinsha, 
LongmuCo-Shuanghu, Bangong-Nujiang, and 
Indus-Yalu-Zangpo suture zones, respectively. 
The Bangong-Nujiang suture zone is located in 
central Tibet, extending from the BangongCo 
in the west to the Nujiang River in the east, 
and it represents the remnant of the Bangong-
Nujiang Ocean (Fig. 1B; e.g., Kapp et al., 2003). 
Complete sequences of ophiolites within the 
Bangong-Nujiang suture zone have been found 
in the Rutog, Dongco, Dongqiao, Amdo, and 
Dengqen areas (Wang et al., 2016). Late Meso-
zoic magmatic rocks (170–101 Ma) in southern 
Qiangtang (Fig.  1B) have been described in 
detail (e.g., Hao et al., 2016b; Liu et al., 2017; 
Kapp et al., 2003; Y.X. Zhang et al., 2017; Zhu 
et al., 2016) and are dominated by intermediate-
felsic igneous rocks.

Our study area is located 30–60  km north-
east in Gerze County (Fig.  1C), where there 
are Carboniferous, Permian, Triassic, Jurassic, 
Cretaceous, and Cenozoic strata. The Paleozoic, 
Triassic, and Jurassic strata are deformed and 
unconformably overlain by Cretaceous strata, 
which are unconformably overlain by Cenozoic 
strata. Here, we focused on the Cretaceous strata, 
which consist of the interbedded sedimentary 
rocks (sandstone, limestone, conglomerate, and 
calcareous shale) and volcanic rocks. The vol-
canic rocks cover an area of ~200  km2, strike 
approximately E-W, and are mainly composed 
of lavas with minor volcanic breccia. Recently 
studied volcanic-sedimentary sections (Chen et 
al., 2017) have shown that the volcanic rocks are 
basalts, basaltic andesites, andesitic rocks, and 
rhyolites. Our samples from five sites (sites a to e 
in Fig. 1C) cover lavas from basalts to rhyolites. 
The field relationships are presented in Supple-
mentary Material 1 in the GSA Data Repository.1

The Gerze basalts and andesites are from 
site a. The basalts show an intergranular tex-
ture with coarse phenocrysts of clinopyroxene 
and plagioclase (Fig. 2A). They have alteration 
products of epidote and calcite. The andesites 
are porphyritic with phenocrysts of coarse- and 
medium-grained plagioclase and minor quartz 
(Fig.  2B). The alteration minerals in the an-
desites are also mainly epidote and calcite. The 
Gerze basaltic andesites are from site b. They 
have a porphyritic texture with fine phenocrysts 
of plagioclase (Fig. 2C). The alteration minerals 
(calcites and minor dolomites) can be observed 
in thin sections of the basaltic andesites. The 
Gerze dacites are from sites c and d. They also 
show a porphyritic texture with phenocrysts of 
plagioclase. The Gerze rhyolites are from site 
e and are relatively fresh. They are porphyritic 
with phenocrysts of medium-grained plagio-
clase and minor quartz (Fig. 2D).

RESULTS

Whole-rock major- and trace-element and 
Sr-Nd-Hf isotope analyses, secondary ion mass 
spectrometry (SIMS) zircon U-Pb dating, and 
mineral chemical analyses were conducted at 
the State Key Laboratory of Isotope Geochem-
istry, Guangzhou Institute of Geochemistry, 
Chinese Academy of Sciences (CAS), Guang-
zhou, China. Laser ablation–inductively cou-
pled plasma–mass spectrometry (LA-ICP-MS) 
zircon U-Pb dating and Hf isotope analyses 
were conducted at the Institute of Geology and 
Geophysics, CAS. A more detailed discussion 
of the methodology can be found in Supplemen-
tary Material 2 (see footnote 1; e.g., Huang et 
al., 2007; Li et al., 2006, 2007, 2010; Wu et al., 
2006; Xie et al., 2008), and the analytical results 
are presented in Supplementary Material 3–7 
(see footnote 1).

Ages of Gerze Lavas

The Gerze lavas in the Cretaceous strata 
were previously suggested to have erupted dur-
ing 110–104 Ma (Fig. 1C) based on the ages of 
the rhyolites (ca. 110 Ma; Chang et al., 2011; 
Kapp et al., 2005) and the basaltic andesites 
(ca. 104 Ma; Chen et al., 2017). Here, we pres-
ent new LA-ICP-MS zircon U-Pb ages for the 
Gerze dacites and a SIMS U-Pb age for the 
Gerze basalts (Fig. 3; Supplementary Material 
5–6 [see footnote 1]).

1GSA Data Repository item 2018295, the ana-
lytical methods and results for the Gerze lavas from 
central Tibet, is available at http://www.geosociety 
.org/datarepository/2018 or by request to editing@
geosociety.org.
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Most of the zircons from the Gerze dacites 
show clear oscillatory zoning and have variable 
grain sizes of ~50–250 µm and length-to-width 
ratios of 1:1–3:1. These zircons have high Th/U 
ratios (0.2–1.7), with U and Th concentrations 
of 114–760 ppm and 72–366 ppm, respectively, 
indicating a magmatic origin (Belousova et 
al., 2002). Gerze dacite samples GZ01-1 and 
GZ26-1 have concordant 206Pb/238U ages with 
weighted mean ages of 105.6 ± 1.2 Ma (mean 

square of weighted deviates [MSWD] = 1.6) 
and 105.6 ± 1.3 Ma (MSWD = 1.8), respectively 
(Figs. 3A and 3B).

It should be noted that basalts may contain 
very few or no magmatic zircons but many xe-
nocrystic grains, and we should use their zircon 
ages with caution. Indeed, zircons of the Gerze 
basalt sample (QT04-1) yielded variable U-Pb 
ages with peaks mainly at 150 and 108  Ma 
(Fig. 3C). The ca. 150 Ma zircons may be xe-

nocrystic grains, given their similarities with 
those from the coeval intrusions in the Gerze 
area (Fig. 1C; Hao et al., 2016a). However, the 
younger zircons with a weighted mean age of 
107.7 ± 1.9 Ma (Fig. 3C) differ from those of 
the coeval intrusions and the nonbasaltic lavas 
in the Gerze area (Fig. 1C) by their short pris-
matic shape and high Th (206–683  ppm) and 
U (419–1114 ppm) contents. Indeed, these zir-
cons are more likely to have a mafic magmatic 

C

B

A

Figure 1. (A) Tectonic framework of the Tibetan Plateau (modified after Yin and Harrison, 2000), showing main suture zones 
between the major blocks: KS—Kunlun suture; JS—Jinsha suture; BNS—Bangong-Nujiang suture; IYZS—Indus-Yarlung-
Zangpo suture. MBT—Main Boundary Thrust. (B) Simplified geological map showing the Mesozoic magmatism in southern 
Qiangtang and Lhasa (after Liu et al., 2017). (C) Geological map of the studied area, Gerze County. Sampling site a for basalts 
(QT04-1, QT04-2) and andesites (QT03-1, QT03-2); site b for basaltic andesites (ZB78-1 to ZB78-4); sites c and d for dacites 
(c for GZ26-1 and GZ26-2; d for GZ01-1); and site e for rhyolites (ZB79-1 to ZB79-4). Literature age data are from Hao et al. 
(2016a), Chen et al. (2017), Chang et al. (2011), and Kapp et al. (2005). Bizha diorites are located to the east of the Gerze and 
have been studied by Hao et al. (2016b).
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signature and may have crystallized from the 
basaltic magmas (Wang et al., 2008; Tang et al., 
2017; Hoskin and Schaltegger, 2003). More-
over, this age is consistent with the age range of 
other Gerze lavas. Thus, we suggest that this age 
of 108 Ma currently provides the best age esti-
mate for the Gerze basalts. Therefore, the Gerze 
lavas within the Cretaceous strata were formed 
at 110–104 Ma.

Mineral and Whole-Rock Geochemistry

Rock Classification
The Gerze lavas have variable and high loss 

on ignition values (LOI) of 1.9–8.4 wt%, in-
dicating that some samples could have been 
altered, consistent with field and petrographic 
observations (e.g., presence of calcites) and 
mineral chemical compositions. Consequently, 
the major elements were recalculated on an 
anhydrous basis. In addition, for the altered 
igneous rocks, potential element mobility lim-
its the use of standard classification diagrams, 
such as the total alkali-silica and K2O-SiO2 dia-
grams (Peccerillo and Taylor, 1976; Le Bas et 
al., 1986). Therefore, we employed another no-
menclature diagram using immobile elements, 
like Co versus Th (Hastie et al., 2007), wherein 
the Gerze lavas plot in a wide range from basalt 

to rhyolite (Fig.  4), consistent with their SiO2 
contents (volatile-free) of 49.2–74.2 wt%. Us-
ing their mineral assemblages and major- and 
trace-element and isotopic compositions, we di-
vided the Gerze lavas into five types of volcanic 
rocks, i.e., basalts, basaltic andesites, andesites, 
dacites, and rhyolites.

Mineral Compositions
The clinopyroxene grains in the Gerze basalts 

are relatively fresh, with SiO2, CaO, FeO, and 
MgO contents (in wt%) of 48.7–53.2, 20.0–
21.5, 5.9–11.6, and 12.6–16.9, respectively 
(Supplementary Material 7 [footnote 1]). They 
have variable Mg# values of 66–84, where Mg# 
= molar MgO/(MgO + FeO) × 100. The plagio-
clase phenocrysts in the Gerze basalts, basaltic 
andesites, andesites, and dacites are significantly 
altered and do not retain their original chemical 
compositions. They generally have undergone 
Ca and Al losses but gained Si and Na. For in-
stance, the plagioclases in the Gerze basalts, 
basaltic andesites, and andesites have extremely 
low CaO contents (<0.5 wt%) and SiO2, Al2O3, 
and Na2O (in wt%) compositions of 68.8–71.5, 
18.9–20.2, and 8.5–10.5; 71.5–73.2, 19.6–20.4, 
and 7.1–9.7; and 69.1–71.9, 20.0–21.2, and 
7.8–9.5, respectively (Supplementary Material 
7 [footnote 1]). In contrast, the plagioclases 
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Figure  2. Representative thin section photomicrographs of the Gerze lavas. (A) basalt 
QT04-1; (B) andesite QT03-2; (C) basaltic andesite ZB78-3; (D) rhyolite ZB79-1. Mineral 
abbreviations: Cpx—clinopyroxene; Pl—plagioclase.

in the rhyolites are relatively fresh and exhibit 
SiO2, Al2O3, Na2O, and CaO contents (in wt%) 
of 54.5–59.5, 25.3–27.4, 5.7–7.3, and 8.1–11.4, 
respectively.

Mineral chemistry can be used to evaluate 
the degree of alteration of a rock. If the volcanic 
rocks have been significantly affected by altera-
tion, the main mineral phases will not retain their 
igneous signatures and chemical compositions. 
Therefore, the Gerze basalts, basaltic andesites, 
andesites, and dacites have undergone signifi-
cant posteruptive alteration, whereas the Gerze 
rhyolites have not been significantly altered.

Alteration Effects
Previous geochemical studies on altered ig-

neous rocks have demonstrated that the major-
ity of large ion lithophile elements (LILEs) can 
be variably mobilized, whereas the high field 
strength elements (HFSEs), rare earth elements 
(REEs), and transition elements are considered 
to be relatively immobile during a range of 
weathering, hydrothermal, and low-grade meta-
morphic processes (e.g., Hastie et al., 2007, 
2011). Hence, the effects of posteruptive altera-
tion on elemental mobility need to be assessed 
prior to the interpretation of geochemical data. 
Representative variation diagrams for the Gerze 
lavas are shown wherein incompatible elements 
are plotted against immobile Nb (Fig. 5). If the 
elements are immobile, the data should form 
positive linear vectors on log-log plots (e.g., 
Hastie et al., 2011; Pearce, 2014).

For the Gerze basalts, the bivariate diagrams 
of LILEs (Sr and Ba) versus Nb show large scat-
ter without pre-alteration positive linear trends 
(Figs.  5A and 5B), suggesting such elements 
are mobile and cannot be used to character-
ize rock geochemistry and to decipher petro-
genesis. Conversely, Th, Zr, La, Nd, Y, and Yb 
show much smaller scatter and correlate signifi-
cantly with Nb, indicating that these elements 
are relatively immobile (Figs.  5C–5H). As for 
the Gerze basaltic andesites, except for Ba, ele-
ments including Sr, Th, Zr, La, Nd, Y, and Yb 
correlate tightly with Nb, indicating their immo-
bility (e.g., Hastie et al., 2011; Pearce, 2014). 
Figure 5 also shows that most trace elements of 
the Gerze andesites and dacites have tight cor-
relation with Nb, indicating these elements have 
not been affected much by alteration. The Gerze 
rhyolites have fresh plagioclases and the low-
est LOI values of 1.9–2.1 wt%, indicating that 
they were probably the least affected among the 
Gerze lavas during alteration.

Gerze Basalts and Basaltic Andesites
The Gerze basalts have SiO2 contents of 

49.2–50.9 wt% and low MgO (4.7–6.0 wt%), 
Cr (24–180 ppm), and Ni (43–91 ppm) contents. 
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The Gerze basalts show subparallel REE distri-
bution patterns yet variable LILEs (e.g., Sr, Ba, 
U; Figs.  6A–6B), consistent with the mobil-
ity of the latter. They are characterized by low 
total REE contents and slightly depleted light 
(L) REEs [(La/Yb)N = 0.66–0.69, where N de-
notes normalized to chondrite values of Sun and 
McDonough, 1989] and flat heavy (H) REEs 
[(Gd/Yb)N = 1.0–1.1], very similar to the aver-
age normal mid-ocean-ridge basalt (N-MORB; 
Fig. 6A). The Gerze basalts show extremely de-
pleted Nd and Hf isotopic compositions [εNd(t) 
= 8.5–9.0; εHf(t) = 17.19–17.20]. Nd and Hf 
are immobile during alteration processes, and 
thus their isotope systems could represent the 
primary composition of the Gerze basalts. The 
high Sr isotopic values [(87Sr/86Sr)i = 0.7069–

0.7071] of the Gerze basalts, deviating from the 
mantle array (Fig. 7), are meaningless, because 
Sr has been mobilized by alteration processes.

Relative to the Gerze basalts, the Gerze ba-
saltic andesites, with SiO2 = 52.0–59.0 wt% and 
MgO = 1.2–2.5 wt%, show distinct REE distri-
bution patterns with higher total REE contents 
and slight LREE enrichments [(La/Yb)N = 3.3–
4.0; Fig. 6C]. The Gerze basaltic andesites ex-
hibit some arc-like geochemical signatures, e.g., 
negative Nb and Ta anomalies (Fig. 6D). How-
ever, they differ from the majority of arc basalts 
and basaltic andesites by higher HFSEs contents 
[e.g., Nb (10–12  ppm), Ta (0.7–0.8  ppm), Zr 
(296–323 ppm)], and elevated Nb/La (>0.5) ra-
tios. The Gerze basaltic andesite also have high 
TiO2 (1.9–2.2 wt%) and P2O5 (0.37–0.42 wt%) 

contents. The basaltic andesites show depleted 
Sr-Nd isotopic compositions with εNd(t) = 2.5–
2.7 and (87Sr/86Sr)i = 0.7047–0.7050 (Fig. 7).

Gerze Andesites and Dacites
Two andesite samples show subparallel 

REE and trace-element distribution patterns 
(Figs. 6E–6F). The Gerze andesites show weak 
LREE enrichments [(La/Yb)N = 2.7–3.1] with 
relatively low REE contents and negligible Eu 
anomalies (Eu/Eu* = 0.90–0.93). The Gerze 
andesites have relatively enriched Sr-Nd isoto-
pic compositions, with εNd(t) = –3.3 to –2.9 and 
(87Sr/86Sr)i = 0.7095–0.7096 (Fig. 7).

In contrast, the Gerze dacites are character-
ized by high REE contents, significant LREE 
enrichments [(La/Yb)N = 12–13], and negative 

D
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Figure 3. Zircon U-Pb concordia diagrams with representative zircon cathodoluminescence (CL) images for the Gerze 
lavas: (A–B) laser ablation–inductively coupled plasma–mass spectrometry (LA-ICP-MS) dating results of dacites 
GZ01-1 and GZ26-1, respectively, and (C) secondary ion mass spectrometry (SIMS) dating result of basalt QT04-1.  
(D) Histogram of zircon Hf isotopes for the Gerze dacites. MSWD—mean square of weighted deviates.
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Eu (Eu/Eu* = 0.46–0.47) and Sr anomalies 
(Figs. 6E–6F). The Gerze dacites have similar 
Nd but lower Sr isotopic ratios [εNd(t) = –3.5 to 
–3.3 and (87Sr/86Sr)i = 0.7062–0.7066] relative to 
the Gerze andesites (Fig. 7). Magmatic zircons 
from the dacite samples GZ01-1 and GZ26-1 
yielded εHf(t) values of +0.3 to +6.5 and of –2.5 
to +4.1, respectively (Fig. 3D).

Gerze Rhyolites
The Gerze rhyolites have relatively constant 

and high SiO2 (73.4–74.2 wt%) but low MgO 
(0.8–0.9 wt%) contents. The Gerze rhyolites 
show clear REE fractionation [(La/Yb)N = 
24–29] with slightly concave middle and heavy 
REE patterns, and weak negative Eu anomalies 
(Eu/Eu* = 0.86–0.90; Fig. 6G). The Gerze rhyo-
lites have high La (16.6–18.2 ppm) and low Y 
and Yb (4.4–5.8 and 0.4–0.5 ppm, respectively) 
contents, giving high La/Yb ratios (20–124). 
These geochemical characteristics seem to be 
similar to those of classic adakites (e.g., Drum-
mond et al., 1996; Martin et al., 2005; Condie, 
2005) but distinct from those of normal arc an-
desite-dacite-rhyolite (ADR) suites. However, 
the Gerze rhyolites differ from typical adakites 
by relatively higher SiO2 (>70 wt%) and lower 
MgO (<2 wt%) and transition element (Cr and 
Ni) contents. Moreover, the lower Sr contents 
(299–343  ppm) and Sr/Y ratios could distin-
guish the Gerze rhyolites from classic adakites. 
Typical Cenozoic adakites are intermediate-

silicic volcanic and intrusive rocks with SiO2 
>56 wt%, Al2O3 >15 wt%, MgO <6 wt%, 
Y <18 ppm, Yb <1.9 ppm, and Sr >400 ppm, 
which are widely considered to be generated by 
partial melting of basaltic rocks with residues of 
garnet amphibolite, amphibole-bearing eclogite, 
or eclogite (Defant and Drummond, 1990). The 
Gerze rhyolites show slightly depleted Sr-Nd 
isotopes [εNd(t) = 0.9–1.3, (87Sr/86Sr)i = 0.7049–
0.7050; Fig. 7].

DISCUSSION

Petrogenesis of Gerze Lavas

With the previous assessments of potential 
alteration effects, we can selectively use im-
mobile elements and resistant isotope systems 
to discuss the petrogenesis of the Gerze lavas.

Gerze Basalts
The extremely depleted Nd-Hf isotopes 

[εNd(t) = 8.5–9.0; εHf(t) = 17.19–17.20] of the 
Gerze basalts probably imply that they have 
not been significantly contaminated by crustal 
components during their ascent to the continen-
tal crust.

The Gerze basalts have MgO of 4.7–6.0 
wt%, Cr of 24–180 ppm, and Ni of 43–91 ppm, 
clearly lower than those of mantle-derived pri-
mary melts (MgO >8 wt%, Cr >1000 ppm, and 
Ni >400 ppm). This suggests that the Gerze ba-

100

10

1

0.1

0.01
70 60 50 40 30 20 010

Co (ppm)

T
h

 (
p

p
m

)

Cal-alkaline

High-K calc-alkaline 
& shoshonite

Island arc tholeiite 

Basalt
Basaltic
andesite &
andesite

Dacite
& rhyolite*

Figure  4. Th-Co discrimination diagrams for the Gerze lavas (Hastie et al., 
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cite and rhyolite fields.

salts underwent a certain degree of fractional 
crystallization of mafic minerals (e.g., olivine, 
clinopyroxene) from parental magmas. This 
is consistent with the chemical compositions 
of clinopyroxene phenocrysts having variable 
and low Mg# (66–84). Fractional crystalliza-
tion (FC) without assimilation (A) during ba-
saltic magma differentiation would not change 
the REE distribution patterns and isotopes. The 
Gerze basalts show depleted LREEs and flat 
HREEs, very similar to N-MORB. Thus, this 
probably indicates that they originated from 
an asthenosphere mantle, consistent with their 
extremely depleted Nd-Hf isotopic composi-
tions. In addition, the Gerze basalts have com-
parable Nd isotopes to the N-MORBs of the 
Bangong-Nujiang suture zone ophiolites. Also, 
Li et al. (2015) suggested that the Duolong 
diabases with whole-rock εNd(t) of 7.3–9.1 
and zircon εHf(t) of 14.8–16.1 should have 
originated from the depleted asthenospheric 
mantle. Therefore, the REE distribution pat-
terns and Nd-Hf isotopes of the Gerze basalts 
strongly indicate that they were sourced from 
the depleted asthenospheric mantle. It should 
be noted that the Gerze basalts similar to N-
MORB may not be fragments of the Bangong- 
Nujiang oceanic crust, though there are many 
ophiolites nearby (Fig. 1C), because the mafic 
rocks within these ophiolites are dominated by 
Cretaceous oceanic-island basalts (OIBs; e.g., 
Zhonggong and Dongco; Bao et al., 2007). 
Moreover, recent studies have suggested that 
most of the ophiolitic fragments across the 
Bangong-Nujiang suture zone were derived 
dominantly from two oceanic plateaus with 
peak ages at 185 Ma and 121 Ma (K.J. Zhang 
et al., 2014) and some N-MORB–type ophio-
lites that mainly occurred during the Jurassic 
(Wang et al., 2016).

However, the Th enrichment of the Gerze ba-
salts could imply some subduction inputs into 
their mantle source. Th/Nb can effectively indi-
cate subduction input because the Th/Nb ratio 
retains an almost-constant value during mantle 
melting, whereas the mobile element Th and 
immobile element Nb can be clearly decoupled 
during subduction. Therefore, the Th/Yb versus 
Nb/Yb discrimination diagram based on the 
Th/Nb proxy (e.g., Pearce, 2014) can be used 
to identify subduction inputs into the mantle 
source. Lavas from nonsubduction settings plot 
along a MORB-OIB array, while lavas derived 
from subduction-modified mantle are displaced 
from the mantle array to higher Th/Yb ratios 
(Fig.  8A). The Gerze basalts have higher Th/
Nb and clearly deviate from the mantle array 
(Fig.  8A), suggesting a subduction-modified 
mantle source. Moreover, the Gerze basalts 
have similar Nb/Yb but higher Th/Yb relative to  
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N-MORB, suggesting slab fluid inputs into their 
mantle source.

Therefore, partial melting of depleted as-
thenospheric mantle metasomatized by slab 
fluids and subsequent fractional crystalliza-
tion likely contributed to the generation of the 
Gerze basalts.

Gerze Basaltic Andesites:  
Nb-Enriched Basalts

Although the Gerze basaltic andesites have 
higher Th/Nb values and also show arc af-
finities, they probably do not share a mantle 
source with the Gerze basalts. The Gerze ba-
saltic andesites have LREE enrichments and 
exhibit REE distribution patterns distinct 
from those of the Gerze basalts. In addition, 
the Gerze basaltic andesites have different 
Nd isotope values (Fig.  7A) and La/Sm ra-
tios (Fig. 8B) compared to the Gerze basalts. 
Thus, FC processes in the parental magmas of 
the Gerze basalts could not have formed the 
Gerze basaltic andesites. Moreover, the Gerze 
basaltic andesites could not be produced by 
AFC processes in the parental magmas of 
the Gerze basalts, because crustal assimila-
tion would strongly decrease the Nb/La ratios 
with decreasing Nd. Nevertheless, some Gerze 
basaltic andesites have similar Nb/La ratios 
compared to the Gerze basalts, but they have 

clearly lower Nd isotopes (Fig. 8C), which is 
inconsistent with crustal assimilation.

We suggest that the Gerze basaltic andesites 
had a mantle source distinct from that of the 
Gerze basalts. In fact, the high TiO2 and P2O5 
contents (1.9–2.2 and 0.37–0.42 wt%, respec-
tively), high HFSE contents [Nb (10–12 ppm), 
Ta (0.7–0.8 ppm), Zr (296–323 ppm)], and el-
evated Nb/La ratios (>0.5) of the Gerze basal-
tic andesites distinguish them from normal arc 
basaltic rocks derived from subduction fluid–
modified mantle wedge, but these values re-
semble closely those of the Nb-enriched basaltic 
rocks, such as the Sulu arc basalts and basaltic 
andesites in southern Philippines (Fig. 8D; Cas-
tillo et al., 2007). Moreover, the Gerze basaltic 
andesites show similar REE and trace-element 
distribution patterns to the Jurassic Nb-enriched 
basalts (gabbroic enclaves) in southern Qiang-
tang (Figs. 6C–6D; S.M. Li et al., 2014).

Given that Nb-enriched basalts have been 
distinguished from high-Nb basalts in the Sulu 
arc based on the high-Nb basalts being more en-
riched in LILEs, LREEs, Nb, and Ta (Castillo 
et al., 2007), the terms high-Nb basalts and Nb-
enriched basalts should not be used interchange-
ably. Here, we adopt the terminology of identi-
fying Nb-enriched basalts and high-Nb basalts 
with Nb contents of 5–20  ppm and >20  ppm, 
respectively (e.g., Hastie et al., 2011). Thus, the 

Gerze basaltic andesites should be classified as 
Nb-enriched basalts.

Two alternative mantle sources have been 
popularly proposed to account for the origin 
and distinctive geochemical characteristics 
of Nb-enriched basalts and high-Nb basalts:  
(1) upper mantle composed of enriched OIB-
like and depleted N-MORB–type components 
(e.g., Castillo et al., 2002, 2007; Hastie et al., 
2015); and (2) mantle wedge that has been 
metasomatized by slab melts (Sajona et al., 
1996; Hastie et al., 2011).

Hastie et al. (2011) suggested that the Halber-
stadt high-Nb basalts in Jamaica can be divided 
into two compositional subgroups, and Hastie 
et al. (2015) further proposed that the group 
1 high-Nb basalts were derived from mantle 
source 1, whereas the group 2 high-Nb basalts 
originated from mantle source 2. The detailed 
modeling results in Hastie et al. (2015) showed 
that small degrees of partial melting of mantle 
source 1 can produce the group 1 high-Nb ba-
salts. With larger degrees of partial melting, the 
modeled partial melts can replicate the elevated 
HREE patterns of the group 2 high-Nb basalts, 
but with clearly higher LREEs and middle (M) 
REEs than the group 2 high-Nb basalts. This 
probably suggests that partial melting of mantle 
source 1 could yield high-Nb basalts with strik-
ing REE fractionation that cannot be obliterated 

0.702 0.704 0.706 0.708 0.710
−10

−5

0

5

10
Alteration

N-MORBs from BNSZ

BNTO-Plateau

Bizha diorites

Juvenile crust-derived 
intermediate-felsic rocks

Jurassic igneous
rocks

BangongCo diorite

87 86
Sr/ Sr(i)

εN
d

(t
)

εN
d

(t
)

Amdo-
orthogneiss

0.70 0.71 0.72 0.73 0.74
−10

−5

0

5

10

10

90

30

50
70

15

Mantle wedge
derived-basalt

87 86
Sr/ Sr(i)

A

11DC16 11RT24

basalt

basaltic andesite

andesite

dacite

rhyolite

B

Figure  7. (A) Sr-Nd isotopes for the Gerze lavas. All Sr-Nd isotopic ratios are corrected to 110  Ma. Normal mid-ocean-ridge basalts  
(N-MORBs) of Bangong-Nujiang suture zone (BNSZ) are from Wang et al. (2016), and oceanic plateau basalts are from Bao et al. (2007), 
K.J. Zhang et al. (2014), Zhu et al. (2006), and Wang et al. (2016). BNTO—Bangong-Nujiang Tethyan Ocean. Juvenile crust–derived 
intermediate-felsic rocks include the Early Cretaceous Duolong porphyries (Li et al., 2013) and RenaCo adakitic granodiorite porphyries 
(Hao et al., 2016a). Jurassic igneous rocks include the ChaerkangCo (Y.X. Zhang et al., 2017) and RenaCo plutons (Hao et al., 2016a). 
The Bizha diorites are from Hao et al. (2016b). The BangongCo diorite is from Liu et al. (2014). (B) Simple isotope modeling to estimate 
the contributions of the basalts and ancient crust in generating the Gerze andesites. Sr-Nd isotopes of mantle wedge–derived basalts are 
from average compositions of two N-MORBs, 11RT24 and 11DC16, with values of Sr = 102 ppm, Nd = 3 ppm, εNd(t) = 8.2, and (87Sr/86Sr)i =  
0.7042. Amdo orthogneisses are from Harris et al. (1988) with the average compositions of Sr = 152 ppm, Nd = 28 ppm, εNd(t) = –9.3, and  
(87Sr/86Sr)i = 0.7348. 

Downloaded from https://pubs.geoscienceworld.org/gsa/gsabulletin/article-pdf/131/5-6/864/4682890/864.pdf
by University of Science and Technology of China, Lu-Lu Hao
on 16 June 2019



Oceanic plateau subduction

	 Geological Society of America Bulletin, v. 131, no. 5/6	 873

completely by variable degrees of partial melt-
ing. This is consistent with the residual garnets 
in mantle source 1. The Gerze Nb-enriched ba-
salts have insignificant REE fractionation with 
Sm/Yb ratios clearly lower than those of the 
Halberstadt group 2 high-Nb basalts, indicating 

that they are not products of partial melting of 
mantle source 1.

Recently, Li et al. (2016) reported some 
OIB-type rocks with positive Nb-Ta-Ti anoma-
lies in the Gerze area and suggested that they 
were likely derived from the upwelling garnet-

asthenosphere mantle through a slab window in 
the mantle wedge. A mantle source involving 
such OIB-like components would also produce 
higher Sm/Yb ratios in the resultant high-Nb 
basalts and Nb-enriched basalts, in contrast to 
the Gerze Nb-enriched basalts. Moreover, such 
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OIBs have slightly higher Nd isotopes than the 
Gerze Nb-enriched basalts (Li et al., 2016). 
Thus, upper mantle composed of such OIB-like 
and extremely depleted N-MORB–type com-
ponents could not be the mantle source of the 
Gerze Nb-enriched basalts.

Accordingly, mantle source 2 (i.e., mantle 
wedge that has been metasomatized by slab 
melts) could be plausibly invoked as the origin 
of the Gerze Nb-enriched basalts. In this model, 
slab melts migrating through a mantle wedge 
will hybridize and metasomatize the mantle pe-
ridotite to precipitate Nb- and Ti-enriched phases 
(dominantly amphibole) in the mantle source 
(e.g., Sajona et al., 1996; Hastie et al., 2011). The 
amphiboles will subsequently break down by 
convection, thus promoting partial melting of the 
mantle wedge and generation of Nb-enriched ba-
salts. Sajona et al. (1996) suggested that the dia-
gram of (Nb/La)MN versus (La/Yb)MN (where MN 
denotes normalized to primitive mantle values 
of Sun and McDonough, 1989) can identify the 
presence of Nb-bearing phases (e.g., amphiboles) 
in the mantle source. Nb/La would not vary with 
degree of melting when no Nb-bearing phases 
were in the mantle, given Nb and La have simi-
lar bulk distribution coefficients, but products 
of partial melting would form negative-sloping 
trends if Nb-enriched phase were involved in this 
process (Fig. 8E). In this respect, the Gerze Nb-
enriched basalts clearly show a negative trend 
(Fig. 8E), similar to the scenarios proposed for 
the Nb-enriched basalts in Mindanao, Philippines 
(Sajona et al., 1996), suggesting their origination 
from slab melt-metasomatized mantle wedge 
with Nb-bearing phases.

Gerze Dacites and Andesites
The significant differences in REE and trace-

element distribution patterns between the Gerze 
andesites and dacites imply different origins.

The Gerze dacites show significant negative 
Eu and Sr anomalies, probably indicating frac-
tionation of plagioclases during their formation. 
The distinct REE distribution patterns and iso-
topes of the Gerze dacites from the Gerze basalts 
and Nb-enriched basalts likely preclude their 
parental magmas from being the Gerze basaltic 
magmas. Instead, the Gerze dacites exhibit REE 
and trace-element distribution patterns parallel 
to the Bizha diorites (Figs. 6E–6F), except for 
their evidently negative Sr and Eu anomalies. 
In addition, the Gerze dacites and Bizha dio-
rites have similar Sr-Nd isotopic compositions 
(Fig. 7A). Furthermore, the zircon εHf(t) (–2.5 to 
+6.5) values of the Gerze dacites (Fig. 3D) are 
very close to those of the Bizha diorites (–5.3 to 
+3.6; Hao et al., 2016b). Therefore, we prefer to 
suggest that the Gerze dacites may be generated 
by FC of intermediate magmas compositionally 

similar to the Bizha diorites. Simple FC mod-
eling shows that fractionating 30% plagioclase 
of the Bizha dioritic components could produce 
REE distribution patterns and trace-element 
trends similar to those of the Gerze dacites 
(Fig.  6E). The ca.  122  Ma Bizha diorites, lo-
cated to the east of the Gerze lavas (Fig. 1C), 
were considered to have been derived from 
partial melting of a subducted mélange (Hao et 
al., 2016b). In a subduction channel, sediments, 
altered oceanic basalts, and hydrated mantle 
physically mix along the slab-wedge interface 
to form hybrid mélange rocks (Marschall and 
Schumacher, 2012; Hao et al., 2016b; Nielsen 
and Marschall, 2017). The Bizha diorites are 
slightly older than the Gerze dacites and can-
not represent a viable parental magma sensu 
stricto, yet it is possible that the parental mag-
mas (mélange-derived intermediate melts) with 
a similar composition to the Bizha diorites could 
have fractionated to form the Gerze dacites.

Compared to the Gerze dacites, the Gerze an-
desites show lower SiO2 and total REE contents 
and higher MgO contents, indicating possible 
contribution of mantle components during their 
generation. Here, we suggest that the involved 
mantle components could be composition-
ally similar to the Gerze basalts rather than the 
Gerze Nb-enriched basalts, because the Gerze 
Nb-enriched basalts have higher REE and Nb 
contents than the Gerze andesites. In addition, 
the Gerze andesites have much more enriched 
Sr isotopes than the majority of Jurassic–Early 
Cretaceous crust-derived intermediate-felsic 
rocks in southern Qiangtang (Y.X. Zhang et al., 
2017; Li et al., 2013; Hao et al., 2016a, 2016b), 
indicating that contamination of such crustal 
components could not have played a vital role 
during their generation (Fig.  7A). Rather, the 
Gerze andesites show enriched Sr-Nd isotopes 
similar to those of the BangongCo quartz-
diorites (Fig.  7A), which originated from a 
source region involving Amdo basement ortho
gneisses (Liu et al., 2014). Thus, we infer that 
the Neoproterozoic–early Paleozoic basement 
orthogneisses with extremely enriched Sr-Nd 
isotopes in the Amdo area (Harris et al., 1988) 
could be an alternative contamination.

Here, simple isotope modeling can be used to 
illustrate the combined contributions of mantle 
components and ancient crust in generating the 
Gerze andesites (Fig.  7B). As the Gerze ba-
salts have no available Sr isotope data due to 
alteration, the average Sr-Nd isotope values of 
two Bangong-Nujiang suture zone N-MORBs 
(with Nd isotopes similar to those of the Gerze 
basalts) are taken to represent the depleted 
asthenospheric mantle wedge–derived magmas. 
The modeling results show that such depleted 
basaltic magmas contaminated by 15% Amdo 

basement orthogneisses can yield the Sr-Nd iso-
topes of the Gerze andesites (Fig. 7B). There-
fore, mantle wedge–derived magmas with a 
similar composition to the Gerze basalts could 
have been contaminated with ancient Amdo 
basement to form the Gerze andesites.

Gerze Rhyolites: Jamaican-Type Adakites
The Gerze rhyolites differ from normal arc 

ADR suites and classic adakites by their higher 
La/Yb and lower Sr/Y, respectively (Figs. 9C–
9D). Interestingly, the distinctive geochemical 
characteristics of the Gerze rhyolites [high SiO2 
(>70 wt%), low MgO (<2 wt%), high La/Yb, 
low Sr and Sr/Y (299–343 ppm, <400), and low 
Y and Yb; Fig. 9] resemble quite closely those 
of the Newcastle volcanics in Jamaica (Hastie 
et al., 2010, 2015). Hastie et al. (2010) termed 
the Newcastle rhyodacites Jamaican-type ada-
kites (JTA), not only to stress their adakitic 
compositions, but also to highlight the small 
yet significant geochemical differences between 
Jamaican-type adakites and “true” adakites. 
Thus, we suggest that the Gerze rhyolites could 
be classified as Jamaican-type adakites. Hastie 
et al. (2010, 2015) suggested that Jamaican-
type adakites could only be generated by partial 
melting of oceanic plateau crust, whereas Shuto 
et al. (2013) argued that the Ryozen Jamaican-
type adakite–like rhyodacites in Japan can be 
generated by FC processes from a basic magma. 
We next discuss the petrogenesis and origin of 
the Gerze Jamaican-type adakites.

The SiO2-Sr variation diagram (Fig.  9B), 
which shows slight increases in Sr content with 
increasing SiO2, could indicate that plagioclase 
(Sr-compatible phase) was not fractionated in 
any significant amount. This is consistent with 
negligible negative Eu anomalies and positive 
Sr anomalies of the Gerze Jamaican-type ada-
kites. In addition, substantial garnet and amphi-
bole fractionation of a basic magma can also be 
precluded, as indicated by the SiO2-Dy/Yb plot 
(Fig.  9E). The Philippine adakites were con-
sidered to be generated by garnet fractionation 
from a basic parental magma (Macpherson et al., 
2006). However, the Gerze Jamaican-type ada-
kites form a distinct field of SiO2 versus Dy/Yb  
and do not have high Dy/Yb ratios relative to 
the Philippine adakites. Amphibole fraction-
ation of a basaltic magma would form a clearly 
negative trend in the SiO2-Dy/Yb plot, as the 
Lesser Antilles island arc lavas have shown. The 
Gerze Jamaican-type adakites, with high SiO2 
contents and Dy/Yb ratios, clearly deviate from 
such a trend. Furthermore, up to 80%–90% FC 
is required to produce adakitic liquids from a 
basic magma (e.g., Drummond et al., 1996), 
corresponding to large cumulates, which are not 
found in southern Qiangtang. Thus, we argue 
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that the Gerze Jamaican-type adakites could not 
have been generated by FC of a basic magma, 
and thus the Jamaican-type adakites data could 
trace the source region.

The low Sr (<400 ppm) and Al2O3 (<19 wt%) 
contents of the Gerze Jamaican-type adakites 
should indicate a residual plagioclase in the 
source region. The significantly fractionated 
HREEs required a garnet residue. The slightly 
concave MREE patterns and positive Zr and Hf 
but negative Ti anomalies can be accounted for 
by amphibole residue (e.g., Hastie et al., 2010). 
Thus, the Gerze Jamaican-type adakites were 
likely derived from a garnet amphibolite source 
region at relatively low pressures (1.0–1.6 GPa) 
to stabilize plagioclase.

The differing Nd isotopes of the Gerze 
Jamaican-type adakites relative to the Bangong-
Nujiang suture zone N-MORBs, the Gerze ba-
salts, and the southern Qiangtang continental 
crust components (Fig.  7A) could imply that 
they were not derived by partial melting of the 
metabasic continental crust or a metamorphosed 
N-MORB oceanic crust. Notably, some Miocene 
adakites in the Lhasa block, southern Tibet, also 
show slightly depleted isotopes similar to those 
of the Gerze Jamaican-type adakites and were 
suggested to be derived from the relatively ju-
venile Gangdese arc crust (e.g., L.Y. Zhang et 
al., 2014). Thus, the possibility that the Gerze 
rhyolites may be derived from a juvenile crust 
should be considered. The isotopes of the south-
ern Qiangtang juvenile crust can be represented 
by those of Early Cretaceous magmatic rocks 
(Hao et al., 2016b), yet are different from those 
of the Gerze rhyolites (Fig. 7A). Thus, the juve-
nile crust should not be taken as the source of 
the rhyolites. Some normal oceanic slab–derived 
adakites with isotopes more enriched than N-
MORB crust could have a slab origin (basalts 
and sediments; e.g., the Jurassic adakites in Li 
et al., 2016). However, the Gerze Jamaican-type 
adakites could not be derived by such a model. 
Compared to the Jurassic adakites, more sedi-
ment involvement is required to produce the 
more-enriched isotopes of the Gerze Jamaican-
type adakites and will result in higher Th con-
tents and higher Th/Ce ratios, which are not ob-
served in the Gerze Jamaican-type adakites.

In fact, Hastie et al. (2015) conducted nu-
merous partial melting models including dif-
ferent source compositions (MORB, OIB, and 
oceanic plateau), mineral modes, melt modes, 
and partition coefficients. The modeling results 
(see fig. 9 in Hastie et al., 2015) clearly illus-
trate that the Jamaican-type adakites can only be 
generated by partial melting of plagioclase- and 
garnet-bearing amphibolite source regions with 
oceanic plateau–like compositions, rather than 
with N- and enriched (E) MORBs and OIBs. 

For instance, fusing an N-MORB, even together 
with subsequent large degrees of amphibole 
fractionation, could not produce the high LILE 
(e.g., Ba and Sr) and LREE (e.g., La) contents 
of the Jamaican-type adakites. Partial melting 
of an E-MORB and OIB source, with and with-
out amphibole fractionation, will yield clearly 
higher La contents and Nb/Yb ratios relative 
to the Jamaican-type adakites. However, 10% 
partial melting of an oceanic plateau, together 
with amphibole fractionation, can well replicate 
the whole range of the Jamaican-type adakite 
trace-element data. Indeed, the Dy-Yb variation 
diagram shows the amphibole FC trend during 
the formation of the Jamaican-type adakites 
(Fig.  9F). The Gerze Jamaican-type adakites 
have extremely similar geochemical features in 
many aspects, e.g., Nb/Yb ratios, LREE and Sr 
contents. Therefore, could the Gerze Jamaican-
type adakites possibly be generated by fusing an 
oceanic plateau source?

Recently, most of the ophiolitic fragments 
across the Bangong-Nujiang suture zone were 
considered to have been derived dominantly 
from two oceanic plateaus with age peaks at 
185 Ma and 121 Ma, respectively (K.J. Zhang 
et al., 2014), consistent with distinctly enriched 
trace-elemental and isotopic compositions 
of the mafic rocks relative to N-MORB–type 
oceanic crust (K.J. Zhang et al., 2014; Wang 
et al., 2016). For example, the Sr-Nd isotopes 
of these basalts closely resemble those of the 
Kerguelen Plateau basalts in the Indian Ocean, 
Tethyan plume-derived basalts, and Ontong 
Java plateau lavas (see fig. 9 in K.J. Zhang et al., 
2014). Moreover, shallow-water deposits (e.g., 
fossil soil horizons, conglomerates, bioclastic 
limestones) are often present in these Bangong-
Nujiang suture zone basalts (e.g., Zhu et al., 
2006; K.J. Zhang et al., 2014, 2017), consistent 
with the abnormal thickness of the basalts (up to 
14 km). Combined with the large spatial extent 
of the Bangong-Nujiang suture zone ophiolitic 
basalts (from the Rutog to the Amdo, 1000 km 
long), K.J. Zhang et al. (2014) and Lu et al. 
(2016) argued that they are likely the remnants 
of Bangong-Nujiang oceanic plateaus. Here, we 
adopt such a suggestion. Interestingly, the Sr-Nd 
isotopic compositions of the Gerze Jamaican-
type adakites can be plotted into the field of the 
Bangong-Nujiang oceanic plateaus (Fig.  7A). 
Therefore, the Gerze Jamaican-type adakites 
could be plausibly generated by fusing an oce-
anic plateau source.

Gerze Nb-Enriched Basalt and Jamaican-
Type Adakite Association

The rock association between the Gerze 
Nb-enriched basalts originating from slab 

melt–metasomatized mantle wedge and the 
Gerze Jamaican-type adakites sourced from an 
oceanic plateau implies a slab-mantle interac-
tion. The Gerze Nb-enriched basalts show iso-
topic compositions between those of the Gerze 
Jamaican-type adakites and asthenosphere 
mantle, suggesting that their mantle source was 
contaminated with a slab (oceanic plateau) melt.

A slab melt migrating through a mantle 
wedge will probably react with the mantle pe-
ridotites, resulting in the original mineralogy of 
the peridotite being replaced by precipitating 
Nb- and Ti-enriched phases (pargasitic amphi-
bole; e.g., Hastie et al., 2011). Such a metaso-
matized mantle can then be partially melted to 
generate the high-Nb basalts and Nb-enriched 
basalts (the Gerze Nb-enriched basalts in this 
study). Accordingly, the slab melts hybridized 
by the mantle will lower the SiO2 contents but 
elevate the MgO, Ni, and Cr contents (e.g., Has-
tie et al., 2010). Experiments (Rapp et al., 1999; 
Rapp and Watson, 1995) show that partial melts 
of a basaltic source commonly have low MgO 
(<1.4 wt%), but they will have much higher 
MgO (>2 wt%) if the resultant liquids were con-
taminated by mantle peridotites.

The Gerze Jamaican-type adakites have low 
MgO (<1 wt%), Cr, and Ni contents, and thus the 
oceanic plateau melts may not have substantially 
interacted with a peridotite source. This cannot 
be reconciled with the association between the 
Gerze Nb-enriched basalts and Jamaican-type 
adakites. However, similar to the Jamaican-type 
adakites from Jamaica (Hastie et al., 2015), the 
Gerze Jamaican-type adakites could have under-
gone a high degree of amphibole fractionation, 
effectively obliterating the mantle signature. 
Mass balance modeling results (Hastie et al., 
2015) show that the MgO contents of the pa-
rental Jamaican-type adakites magmas could be 
>3 wt%, consistent with those of melts contami-
nated by the mantle. For instance, the parental 
magmas forming the Jamaican-type adakites 
with 0.8 wt% MgO by fractionating 27%–40% 
amphibole should have MgO contents of 3.9–5.4 
wt%. Thus, partial melts of an oceanic plateau 
could interact with the mantle and have the ex-
pected high MgO, Cr, and Ni contents. The low 
MgO contents of the Gerze Jamaican-type ada-
kites could be attributed to amphibole fraction-
ation of the hybrid melts. In this way, the Gerze 
Nb-enriched basalts could have originated from 
a mantle source metasomatized by the oceanic 
plateau–derived magmas.

Oceanic Plateau Subduction and Tectonic 
Evolution of the Bangong-Nujiang Ocean

After contemplating the petrogenesis of 
the Gerze lavas (basalts, Nb-enriched basaltic  
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andesites, andesites, dacites, and Jamaica-type 
adakitic rhyolites), we will now discuss the 
tectonic evolution of the Bangong-Nujiang 
Tethyan Ocean.

Closure of the Bangong-Nujiang Ocean
The closure time of the Bangong-Nujiang 

Ocean remains highly controversial, with two 
periods hypothesized: the Late Jurassic (e.g., 
Kapp et al., 2007; Yan et al., 2016; Zhu et al., 
2016) and the late Early Cretaceous (e.g., J.X. 
Li et al., 2014; Fan et al., 2015; K.J. Zhang et 
al., 2012, 2014; Wang et al., 2016). Here, we 
identified the Early Cretaceous Gerze lava asso-
ciations in southern Qiangtang, which provide 
some constraints on this debate.

Relative to the intermediate-felsic rocks, the 
mafic rocks are more sensitive to their tectonic 
settings. The Gerze basalts were sourced from 
the slab fluid–metasomatized mantle, while the 
Gerze Nb-enriched basalts originated from a 
mantle source metasomatized by oceanic pla-
teau–derived magmas. This clearly indicates 
an oceanic subduction setting, where discrete 
fluids and melts from the slab arrived at the 
subarc mantle wedge separately. Similar cases 
have been observed in the Umnak volcanics, 
Aleutian arc (Class et al., 2000). Moreover, 
the source of the Gerze Jamaican-type ada-
kites was a subducted oceanic plateau, and the 
parental magmas of the Gerze dacites could be 
the subduction mélange-derived intermediate 
melts. Therefore, the Gerze lavas were probably 
generated in a subduction setting. The identi-
fication of the subduction-related magmatism 
in the Gerze area strongly suggests that the 
northward subduction of the Bangong-Nujiang 
Ocean continued during the Early Cretaceous. 
Accordingly, we argue for the closure time of 
ca. 100 Ma.

Tectonic Evolution of  
the Bangong-Nujiang Ocean

With the Bangong-Nujiang Ocean closure 
time of ca.  100 Ma in mind, we suggest that 
late Mesozoic magmatism (ca.  170–101  Ma) 
in southern Qiangtang would have been gen-
erated in a continental arc setting rather than 
in a syncollision or postcollisional setting, 
and therefore it can be attributed to northward 
oceanic subduction (Zhang et al., 2012). Nota-
bly, a striking 20 m.y. magmatic lull (ca. 145–
125 Ma) exists in southern Qiangtang (Hao et 
al., 2016a, 2016b; Liu et al., 2017; J.X. Li et 
al., 2014; Y.X. Zhang et al., 2017). Any tec-
tonic geodynamics should be well reconciled 
with such a magmatic gap. Therefore, some 
geodynamic models (e.g., continuous subduc-
tion [J.X. Li et al., 2014], ridge subduction [Xu 
et al., 2017], and slab break-off [Zhu et al., 
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2016]) remain questionable because they fail 
to explain the magmatic gap.

In subduction zones, magmatic lulls have 
been widely attributed to the disappearance 
of the asthenospheric wedge (Gutscher et al., 
2000) as a result of flat slab subduction. Com-
bined with previous studies (Hao et al., 2016a, 
2016b; J.X. Li et al., 2014), we propose a 
geodynamic model for the Bangong-Nujiang 
oceanic subduction: normal-angle subduction 
during 170–145  Ma, flat slab subduction dur-
ing 145–125 Ma, and subsequent slab roll-back 
after 125 Ma (Y.X. Zhang et al., 2017). Flat slab 
subduction is consistent with the N-S crustal 
shortening of southern Qiangtang since 140–
130 Ma (e.g., Kapp et al., 2005, 2007). Similar 
cases have occurred in the Andes area (e.g., van 
Hunen et al., 2002). However, the mechanism 
causing flat slab subduction of the Bangong-
Nujiang Ocean remains unknown.

In Central and South American Andes, flat 
slab subduction was often accompanied by sub-
duction of aseismic ridges or oceanic plateaus, 
such as the Carnegie Ridge in Ecuador (e.g., 
Gutscher and Peacock, 2003; Bourdon et al., 
2003), the Cocos Ridge in Costa Rica (e.g., Ga-
zel et al., 2015), and the Copiapó Ridge in Chile 
(e.g., Mulcahy et al., 2014). In fact, when oce-
anic plateaus or aseismic ridges are subducted 
(Gerya et al., 2015), the slab angle will gradu-
ally become flatter due to their larger buoyancy 
relative to the normal oceanic crust (Gutscher, 
2002), and then flat subduction will occur. A 
good correlation between flat-slab geometry 
and aseismic ridge/oceanic plateau subduction 
has been well demonstrated along the Andes 

range by geophysical studies (e.g., Nur and 
Benavraham, 1983; van Hunen et al., 2002).

Therefore, we infer that flat slab subduction 
of the Bangong-Nujiang Ocean may have been 
caused by oceanic plateau subduction (Fig. 10). 
Moreover, the Gerze Jamaican-type adakites 
and Nb-enriched basalt association, a clear in-
dicator of interactions between subducted oce-
anic plateau–derived melts and a mantle wedge, 
could provide supporting evidence for subduc-
tion of the Bangong-Nujiang oceanic plateau.

In summary, the tectonic evolution of the 
Bangong-Nujiang Ocean and associated mag-
matism in southern Qiangtang can be described 
as follows (Fig. 10): (1) Jurassic magmatism was 
generated by normal northward oceanic subduc-
tion as suggested in previous studies (e.g., J.X. 
Li et al., 2014; S.M. Li et al., 2014; Hao et al., 
2016a). (2) During 145–125 Ma, subduction of 
Early Jurassic oceanic plateau beneath southern 
Qiangtang induced flat slab subduction and the 
noticeable magmatic gap. Mélange may have 
formed substantially in a subduction channel dur-
ing this period, as suggested by Hao et al. (2016b). 
(3) Subsequent slab roll-back (a transition from 
flat- to normal-angle subduction) led to asthe-
nospheric convection and renewed magmatism 
(ca. 125–101 Ma). We infer that the Gerze lavas 
formed as follows: (1) A combination of fusing 
of the subducted oceanic plateau, interaction with 
the mantle wedge, and amphibole FC formed the 
Gerze Jamaican-type adakitic rhyolites; (2) de-
compression melting of asthenospheric mantle 
metasomatized by oceanic plateau–derived melts 
produced the Gerze Nb-enriched basaltic an-
desites; (3) fusion of slab fluid–metasomatized 

Figure 10. Sketch maps showing the northward subduction geodynamics of the Bangong-
Nujiang Ocean (not to scale). Normal subduction during the Jurassic (170–145 Ma) is not 
shown here, because it has been described in previous studies (e.g., fig. 12 in S.M. Li et al., 
2014). The dashed lines show flat slab subduction during 145–125 Ma, caused by subduction 
of the oceanic plateau. After 125 Ma, slab roll-back occurred, inducing asthenosphere con-
vection and magmatic flare-up. The petrogenesis of the Gerze lavas is discussed in more de-
tail in the text. BNTO—Bangong-Nujiang Tethyan Ocean; JTA—Jamaican-type adakites; 
NEB—Nb-enriched basalts.
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asthenospheric mantle yielded the Gerze basalts; 
(4) which could have been contaminated with an-
cient Amdo basement to form the Gerze andes-
ites; and (5) the Gerze dacites could have been 
generated by FC of the subduction mélange– 
derived intermediate magmas.

CONCLUSIONS

(1) The ca.  110–104  Ma Gerze lavas con-
tain basalts, Nb-enriched basaltic andesites, 
andesites, dacites, and Jamaica-type adakitic 
rhyolite. The association between the Gerze Nb-
enriched basalt and Jamaican-type adakites im-
plies interactions between the oceanic plateau–
derived melts and mantle wedge. The Gerze 
lavas show clear arc affinities and thus could 
argue for the closure of the Bangong-Nujiang 
Ocean at ca. 100 Ma.

(2) Tethyan oceanic plateau subduction dur-
ing the Early Cretaceous is proposed for the first 
time to illustrate the tectonic evolution of the 
Bangong-Nujiang Ocean and distinctive mag-
matism in southern Qiangtang, central Tibet.

(3) Subduction processes involved in oceanic 
plateau subduction and roll-back can be effec-
tively revealed by identifying the magmatic gap 
and subsequent magmatic flare-up and rock 
associations. This could possibly have impor-
tant reference implications for other subduc-
tion zones.
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