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Abstract Data scarcity is a major obstacle for high-resolution mapping of permafrost on the Tibetan Plateau (TP). This study
produces a new permafrost stability distribution map for the 2010s (2005–2015) derived from the predicted mean annual ground
temperature (MAGT) at a depth of zero annual amplitude (10–25 m) by integrating remotely sensed freezing degree-days and
thawing degree-days, snow cover days, leaf area index, soil bulk density, high-accuracy soil moisture data, and in situ MAGT
measurements from 237 boreholes on the TP by using an ensemble learning method that employs a support vector regression
model based on distance-blocked resampled training data with 200 repetitions. Validation of the new permafrost map indicates
that it is probably the most accurate of all currently available maps. This map shows that the total area of permafrost on the TP,
excluding glaciers and lakes, is approximately 115.02 (105.47–129.59)×104 km2. The areas corresponding to the very stable,
stable, semi-stable, transitional, and unstable types are 0.86×104, 9.62×104, 38.45×104, 42.29×104, and 23.80×104 km2, re-
spectively. This new map is of fundamental importance for engineering planning and design, ecosystem management, and
evaluation of the permafrost change in the future on the TP as a baseline.
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1. Introduction

The Tibetan Plateau (TP), which is also called Earth’s “Third
Pole”, is the highest and most extensive plateau in the world
(Yao et al., 2012). The area of high-elevation permafrost on

the TP ranks first in the world among middle- and low-
latitude permafrost regions, and the permafrost in this region
is very sensitive to the increasing warming rate (Pepin et al.,
2015). Significant degradation of permafrost in most sub-
regions of the TP has occurred and continues to occur (e.g.,
Nan et al., 2003; Wu and Zhang, 2008; Yang et al., 2010).
Permafrost degradation has resulted in increased environ-
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mental and hazard risks (e.g., Cheng and Wu, 2007; Li et al.,
2008; Cheng and Jin, 2013;Wu et al., 2015; Ran et al., 2018).
The presence of permafrost and its changes alter or modify
soil hydrothermal and biological processes, thereby affecting
ecosystem service functions and water systems (e.g., Ye et
al., 2004; Cheng and Jin, 2013; Jansson and Taş, 2014). In
particular, the degradation of permafrost may affect the
stability of infrastructure by reducing the substrate strength
and increasing soil permeability, mass movement frequency,
thermokarst activity and greenhouse gas fluxes (e.g., Yang et
al., 2010; Schuur et al., 2015). Mapping the permafrost on
the TP is therefore of critical importance.
Existing maps of permafrost/frozen soil on the TP include

the China Map of Snow, Ice, and Frozen Ground
(1:4000000) (Shi et al., 1988), the Tibetan Plateau Perma-
frost Map (1:3000000) (Li and Cheng, 1996), the Circum-
Arctic Permafrost and Ground-ice Conditions Map
(1:10000000) (Brown et al., 1998), the China Map of Geo-
cryological Regionalization and Classification (1:10000000)
(Qiu et al., 2000), the China Map of Glaciers, Frozen Ground
and Deserts (1:4000000) (Wang, 2006), and two recently
produced permafrost maps that are both derived from a
temperature at the top of permafrost (TTOP) model (Zou et
al., 2017; Obu et al., 2019). These maps indicate different
levels of understanding of the permafrost distribution in
different periods, and both contribute to the improvement of
permafrost mapping on the TP (Ran et al., 2012). In parti-
cular, the accuracy of the latest two maps has been improved
by using remote sensing data. However, from the perspective
of current knowledge and data accumulation, these existing
permafrost maps have two weaknesses. First, the classifi-
cation systems used in these maps are based on the areal
continuity of permafrost, which is defined by the areal
fraction of permafrost, except that the map of Zou et al.
(2017) provides only the permafrost extent. This was mainly
influenced by the system used in both the former Soviet
Union and North America, where high-latitude permafrost
zones predominate. However, permafrost at high elevations
differs substantially from permafrost at high latitudes
(Cheng, 1984; Harris et al., 2017). There is an obvious
vertical zonation in the distribution of high-elevation per-
mafrost. The vertical projection of so-called “continuous
permafrost” on a horizontal plane is usually not continuous
but isolated (Cheng, 1984; Harris et al., 2017). Therefore, the
continuity-based system is not suitable for describing high-
elevation permafrost. In addition, continuity is a relative
term and depends on the map scale (Nelson and Outcalt,
1987). This ambiguous definition of continuity and differ-
ences in mapping scale may lead to confusion and incon-
sistency in the mapped distribution of permafrost (Ran et al.,
2012). Moreover, traditional permafrost mapping is limited
by data scarcity. Global and regional permafrost mapping
traditionally relies on in situ air temperature measurement

data, but meteorological stations are sparse and unevenly
distributed on the TP, with compromised representativeness
(Li et al., 2020). Only a few stations are distributed in the
permafrost regions. The scarcity of such data is an obstacle
for high-resolution permafrost mapping.
To address the first weakness, we propose the classifica-

tion system based on ground thermal stability proposed by
Cheng (1984). The system is defined using the mean annual
ground temperature (MAGT) at the depth of zero annual
amplitude (ZAA) (generally at depths of 10–25 m on the
TP), which is one of the most direct and reliable indicators
for permafrost occurrence (Romanovsky et al., 2010; Ran et
al., 2015). Péwé (1983) considered that this system is
workable, and a thermal stability map of North American
permafrost based on MAGTwas compiled by Harris (1986).
First, the thermal stability-based classification system was
developed based on the three-dimensional zonation (vertical,
latitudinal, and aridity) of high-elevation permafrost; thus,
this system considers the differences in the distribution
pattern between high-elevation permafrost and high-latitude
permafrost, as mentioned in the previous paragraph, and is
therefore more suitable for describing high-elevation per-
mafrost than continuity-based systems. Second, ground
thermal stability is more closely linked with engineering
applications than areal continuity of permafrost. The ground
thermal stability reflects the thermal inertia (here, it refers to
the energy involved in changing the soil temperature, heat
exchange with the external environment, the energy needed
to raise the soil temperature and the heat of fusion associated
with the ice/water phase change upon thawing/melting or
freezing of ground) of permafrost and is related to permafrost
degradation stages (Jin et al., 2006; Wu et al., 2010). Un-
derstanding the degradation stage of permafrost is vital for
engineering planning and design in reducing permafrost-re-
lated hazards and for the water cycle, climate change, and
ecosystem protection. Third, classification systems based on
ground thermal stability are more applicable for grid-based
mapping technology, such as GIS and physical-based mod-
els, which are commonly used in current permafrost map-
ping. In grid-based schemes, representing the existence of
permafrost is straightforward; however, representing the
percentage of permafrost in each grid cell is challenging.
Finally, the thermal stability-based definition of permafrost
is independent of the map scale. Therefore, it is convenient to
evaluate permafrost degradation.
To address the second weakness, remote sensing data and

ground-based measurements from multiple sources should
be integrated and used. As stated above, air temperature
isotherms are usually used to delineate permafrost zones.
However, many studies have suggested that air temperature
is not a reliable index for permafrost distribution because it
neglects the effects of snow cover, vegetation, and other
variables, such as surface and thermal offsets, that influence

2 Ran Y, et al. Sci China Earth Sci

 http://engine.scichina.com/doi/10.1007/s11430-020-9685-3



the occurrence of permafrost (Luo et al., 2018a), which leads
to strong spatial heterogeneity even within a small spatial
region with consistent topography (Luo et al., 2020). Thus,
land surface temperature (LST) should be used instead
(Nelson and Outcalt, 1987). Although LST is a relatively
reliable criterion, measurements of this quantity are tradi-
tionally less readily available than those of air temperature,
and its heterogeneity is very strong. Thus, extrapolating LST
over regions where such measurements are missing is quite
challenging. The rapid development of satellite-based ther-
mal infrared remote sensing technology has changed this
situation. Satellite-based measurements of land surface
temperature, together with other variables such as snow
cover and vegetation structure, with high spatial and tem-
poral resolutions are capable of overcoming the challenges
of sparse data faced by permafrost mapping.
This paper aims to develop a new, general and high-re-

solution permafrost map over the TP based on the ground
thermal stability classification system, as proposed by Cheng
(1984), by integrating remotely sensed predictor variables,
reanalysis data, and ground-measured MAGT using statis-
tical learning technology. A criterion for remotely sensed
mean annual land surface temperature (MALST) and land
surface frost number (SFN) is also provided to classify
permafrost thermal stability. In this section, we have in-
troduced the rationale for thermal stability-based permafrost
mapping methods and the objective of this study. Section 2
describes the classification system, methodology, and data-
sets used in this study. Section 3 presents the results, in-
cluding the model comparison and accuracy assessment for
predicting MAGT, characteristics of permafrost stability on
the TP, and remote sensing criteria for mapping permafrost
stability. Section 4 discusses the total area of permafrost on
the TP and potential applications of the new map. Section 5
summarizes and concludes the paper.

2. Methodology and datasets

2.1 Permafrost classification

Based on the ground temperature survey data along the

Qinghai-Tibet Highway and the three-dimensional zonation
(vertical, latitudinal, and aridity) of high-elevation perma-
frost, Cheng (1984) proposed a classification system to de-
scribe high-elevation permafrost zonation. This system
divided high-elevation permafrost into six types: very stable,
stable, semi-stable, transitional, unstable, and very unstable
by using the MAGT as the sole indicator. Cheng (1984) also
related the thermal stability to permafrost thickness and
mean annual air temperature (MAAT) (Table 1). In general,
the thermal stability of permafrost is related to the ground
temperature and ground ice content. However, until recently,
there have been almost no available data on the ground ice
content and permafrost thickness across the entire TP. Al-
though the Circum-Arctic Permafrost and Ground-ice Con-
ditions Map provides information on ground ice patterns, its
accuracy and spatial resolution are both relatively low
(Brown et al., 1998). Ground temperature is still the best
indicator for permafrost distribution and is closely related to
the thermal stability of permafrost. In addition, the devel-
opment of many periglacial phenomena is related to the
MAGT.
Very unstable permafrost, with MAGT values generally

greater than 0°C, occurs on the TP (Cheng, 1984; Nan et al.,
2002; Luo et al., 2018a). This refers to cave ice and frozen
gravel distributed below the lower limit of permafrost. This
type of permafrost is generally relatively thin and is found at
either great or shallow depths with a sporadic distribution. It
is currently challenging to capture its distribution char-
acteristics at the 1 km scale. Therefore, this type of perma-
frost was ignored, and the 0°C isotherm of MAGT was used
to distinguish permafrost from seasonal frost in this study.
For the temperature index, although only MAAT data are

generally available from meteorological stations, MAGT is
believed to be a more reliable indicator of permafrost thermal
stability. However, due to the high cost and challenge of
ground temperature measurements at high elevations, per-
forming finely spaced traditional MAGT measurements is
very difficult. With the accumulation of MAGT investigation
data and the availability of remote sensing data, it is now
possible to estimate MAGTwith higher accuracy than in the
past.

Table 1 Classification system of high-elevation permafrosta)

Type of permafrost based
on thermal stability

Classification criteria

Mean annual ground temperature (°C) Thickness of permafrost (m) Mean annual air temperature (°C)

Very stable <−5.0 170 <−8.5

Stable −3.0 to −5.0 110–170 −6.5 to −8.5

Semi-stable −1.5 to −3.0 60–110 −5.0 to −6.5

Transitional −0.5 to −1.5 30–60 −4.0 to −5.0

Unstable 0 to −0.5 0–30 −2.0 to −4.0

Very unstable >0 >−2.0

a) Modified according to Cheng (1984)
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2.2 MAGT prediction using a statistical learning model

Ground temperature reaches a point at which its fluctuations
exhibit zero amplitude (or within the defined precision of
measurements) throughout the year, i.e., the MAGT; this
occurs because the ground temperature fluctuations decrease
exponentially with increasing depth below the ground sur-
face due to the high thermal inertia of soil (Florides and
Kalogirou, 2007). This inertia is related to the physical
properties and water/ice state of the soil (Hansson et al.,
2004). This air-soil heat balance is also related to snow cover
and vegetation cover. Snow cover strongly affects the heat
exchange between the soil and the atmosphere due to its high
albedo and emissivity in visible light bands, high absorption
rate in the infrared and thermal infrared bands, high heat
capacity, and low thermal conductivity (Zhang, 2005). The
extinction effect of vegetation cover reduces the solar ra-
diation of the ground surface. Therefore, land surface tem-
perature-based indicators including the freezing degree-days
(FDD) and thawing degree-days (TDD) (i.e., the annual
degree-day totals below and above 0°C, respectively), leaf
area index (LAI), snow cover days (SCD), soil moisture,
precipitation, soil properties (bulk density, organic content,
sand content, silt content, and clay content), and terrain-re-
lated factors (elevation and potential incoming solar radia-
tion, PISR) are potential variables (Hachem et al., 2012). In
this study, the potential variables mentioned above are op-
timized and then integrated with in situMAGTmeasurement
data by using a statistical learning model to estimate the
MAGT distribution at a 1 km resolution. The flowchart of
this process is shown in Figure 1.

2.2.1 Selection of predictor variables using the random
forest technique
The random forest technique (Breiman, 2001) is a popular
machine learning method. Based on the importance ranking
of potential variables and a stepwise ascending variable in-
troduction strategy, it is used for the optimal selection of
explanatory variables to build a parsimonious model for
MAGT prediction from the potential variables mentioned
above. The random forest method involves ensemble means
of the predictions from many regression trees. Here, the
number of trees is set to 400. Each regression tree is built by
using a randomly selected training dataset and five randomly
selected predictor variables to split each tree node. The
random forest provides two measures for variable selection
that include increased mean squared error (%IncMSE) and
increased node purity (IncNodePurity). The %IncMSE is
used to measure the impact of each variable on model per-
formance. The general idea is to permute the values of each
variable and to measure how much the permutation increases
the error of the model. IncNodePurity is related to the loss
function chosen by the best split. More important variables
achieve higher increases in node purities, namely, higher
internode variance and smaller intranode variance. For both
measures, a variable with a higher value is more important.
The main advantage of this technique is the independence
from any assumptions regarding the relationships among
variables and the distribution of errors, unlike the classical
stepwise regression, which is generally based on strong as-
sumptions regarding the functional form of the model
(Sandri and Zuccolotto, 2006). The technique is im-
plemented based on the randomForest package in R (Liaw

Figure 1 Flowchart of the process used to estimate the MAGT.
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and Wiener, 2002).
To reduce the potential overfitting caused by multi-

collinearity among predictors, the variance inflation factor
(VIF) is also used to exclude highly correlated factors. A
small VIF (<5) indicates that the multicollinearity of the
model is acceptable.

2.2.2 Statistical learning model
An optimal model is selected to integrate the observed
MAGT and optimally selected predictor for the MAGT
prediction by comparing five statistical learning techniques
and their ensemble mean. These models are widely used in
various regression analyses and include the generalized lin-
ear model (GLM) (McCullagh and Nelder, 1989), general-
ized additive model (GAM) (Hastie and Tibshirani, 1990),
support vector regression (SVR) (Vapnik, 1995), random
forest (RF) (Breiman, 2001), and geographically weighted
regression (GWR) (Brunsdon et al., 1998). To reduce the
uncertainty of a single run, the arithmetic mean of 200 runs
for each model is used to represent the MAGT distribution in
this study. The model in each run is built by using a re-
sampled training dataset (Section 2.3.1). Model performance
was assessed based on the root-mean-square error (RMSE),
bias, and R squared (R2) computed by 10-fold cross-valida-
tion (CV) with 200 repetitions.
The techniques were implemented based on the R package

of mgcv (Wood, 2011) for GLM and GAM, randomForest
(Liaw and Wiener, 2002) for RF, e1071 (Karatzoglou et al.,
2006) for SVR, and spgwr (Fotheringham, 2002) for GWR.
GLM is an extension of the linear model to handle nonlinear
relationships for various statistical distributions. Assuming
the Gaussian error distribution, GLM was implemented
based on first- and second-order polynomials and the identity
link function. GAM is a semiparametric extension of GLM
that uses a smoothing function to fit nonlinear response
curves to the observation (Aalto et al., 2018). In this study,
the thin plate regression spline was used as a smoothing
function. RF is an ensemble mean of the predictions from
many regression trees. Here, the number of trees is set to 500.
Each regression tree is built by using a randomly selected
training dataset and three randomly selected predictor vari-
ables to split each tree node. SVR is a nonparametric tech-
nique that attempts to find a function that deviates from
observations by a value no greater than a threshold (ε) for
each training point while minimizing the prediction error. Its
output model depends on kernel functions. Here, the default
radial kernel function was used, and the tuning method was
used for choosing model parameters. Then, a cost parameter
of 1000 was used to avoid overfitting. In GWR, the locally
weighted least squares method is used to estimate the para-
meter values point by point. The Gauss function is used as a
spatial weighting function. CV is used to select the optimal
bandwidth parameters. For more details on the R package

used here, please refer to the relevant documentation (https://
cran.r-project.org).

2.3 Datasets and processing

2.3.1 MAGT ground measurement data
The MAGT ground measurements at 237 boreholes widely
distributed over the TP were integrated mainly from the
permafrost monitoring network in China, existing literature
(Wu et al., 2007; Yu et al., 2008; Sheng et al., 2010; Li et al.,
2011, 2016; Zhang et al., 2011; Sun et al., 2013; Wang et al.,
2013; Liu et al., 2015; Qiao et al., 2015; Qin et al., 2017; Cao
et al., 2017; Luo et al., 2018b), and some unpublished data.
The depths of the MAGT observations are generally greater
than 10 m. The elevations of these boreholes range from
3000 to 5300 m, and most of these measurements were made
from 2005 to 2015. Their spatial distribution is shown in
Figure 2.
To reduce the potential overfitting due to residual auto-

correlation, we resampled the training data by excluding
sampling points with a distance less than 3 km. This results
in an average of 111 measurements used for model training
and 12 for model evaluation per CV run.

2.3.2 Annual freezing and thawing degree-days
The FDD and TDD (i.e., the annual degree-day totals below
and above 0°C, respectively), which are commonly used in
permafrost mapping, were derived from daily mean Mod-
erate Resolution Imaging Spectroradiometer (MODIS) LST
data. The broad validation indicates that the accuracy of the
MODIS LST products is 0.5 K in most cases (Wan et al.,
2004). However, cloud contamination is a common problem
in optical/thermal satellite data, as clouds hinder LST ob-
servations. LST measurements in cloud-covered areas are
thus unavailable because cloud-top temperatures are mea-
sured in these areas instead (Ackerman et al., 1998). In this
study, we used a pragmatic scheme to estimate the daily
mean LST based on MODIS LST products (MOD11A1 and
MYD11A1 version 5) (four times daily) with 1-km resolu-
tion. This scheme assumes that the daily LST amplitude is
more homogeneous than the LST itself (Mitchell and Jones,
2005; Liu et al., 2006; Kogan et al., 2011; Ran et al., 2015).
The daily mean LSTwas spatially expanded by interpolating
the daily LST amplitude using a gap-filling algorithm. The
scheme is easy to implement and has a high computational
efficiency. Validation shows that the errors originate pri-
marily from the original MODIS instantaneous LST pro-
ducts. The bias can be removed in the statistical learning
model. The workflow of the scheme is shown in Figure 3 and
includes the following two primary steps.
Step 1: Enhancing the daily average LST. For pairs of

pixels (in which daytime and nighttime data are both avail-
able on particular days), the daily average LST is calculated
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as the arithmetic average of the daytime and nighttime LSTs.
The LST amplitude for the day and pixel in question is also
obtained. We interpolate the LST amplitude to the entire TP
using a gap-filling procedure (see Step 2), and this field is
used to estimate the daily average LST values for pixels
where pairs are not available (i.e., either the daytime or

nighttime data are not available on a certain day, but at least
one of these values is available). Finally, the enhanced daily
average LST is generated by combining the daily average
LST for pairs of pixels and the extended daily average LST
for unpaired pixels (Figure 3).
Step 2: Gap-filling for enhanced daily average MODIS

LSTs. Although the daily average LSTs can be enhanced,
there are always many missing and low-quality values in the
data. In this step, the missing values are estimated by im-
plementing a gap-filling procedure that uses a robust
smoothing algorithm, i.e., penalized least square regression
based on discrete cosine transforms (DCT), which explicitly
utilizes time-series information to estimate missing values
(Garcia, 2010). For mathematical details of the robust
smoothing algorithm, refer to Garcia (2010).
Using the above algorithm, the 1-km daily mean MODIS

LSTs over the TP from January 1, 2005, to December 31,
2015, were produced. Then, multiyear mean values of
FDD, TDD, MALST, and SFN from 2005 to 2015 are
calculated. FDD and TDD were used as potential predictor
variables to estimate MAGT. MALST and SFN were used
to define the criterion to classify permafrost stability. In
this study, the SFN is calculated using Eq. (1) (Nelson and
Outcalt, 1987).

SFN = FDD
FDD +TDD , (1)

1/2

1/2 1/2

Figure 2 Distribution of boreholes for ground temperature measurement across the Tibetan Plateau.

Figure 3 The workflow used to estimate annual freezing degree-days
(FDD) and thawing degree-days (TDD), mean annual land surface tem-
perature (MALST), and surface frost number (SFN).
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where the FDD and TDD are derived from the daily average
LST.

2.3.3 Snow, vegetation and soil data
Identical to the process used by Ran et al. (2018), based on
two high-quality datasets that include a daily cloud-removed
snow cover fraction product derived from a MODIS snow
cover product (MOD10A1) with 1-km resolution based on
the cubic spline interpolation algorithm (Tang et al., 2013)
and Global Land Surface Satellite (GLASS) 1-km LAI
product (Xiao et al., 2014; Xiang et al., 2014), the mean SCD
and LAI during 2005 to 2014 were calculated and used in this
study. The SCD is the total number of days that a pixel is
covered with snow in a year, which is calculated based on the
cloud-free daily snow cover fraction products. Only the
pixels with snow cover fractions greater than 50% are con-
sidered snow-covered pixels.
The soil properties from SoilGrids250, including organic

content, clay content, silt content, sand content, and bulk
density, were used. SoilGrids250 is a global gridded soil map
with a spatial resolution of 250 m that is derived from
150000 soil profiles around the world and 158 remote sen-
sing-based soil environmental covariates based on machine
learning algorithms. It was developed by the International
Soil Reference and Information Center (ISRIC) as part of the
World Soil Information (WSI) within the Global Soil In-
formation Facilities (GSIF) framework as a result of broad
international collaboration (Hengl et al., 2017). The soil
properties over the TP at seven standard depths (0, 5, 15, 30,
60, 100 and 200 cm) can be freely downloaded from www.
SoilGrids.org, and the mean values of each property at each
of these depths were used in this study.

2.3.4 Reanalysis data
The high-quality soil moisture dataset used in this study was
obtained from the Climatic Data Center, National Meteor-
ological Information Center, China Meteorological Admin-
istration (CMA). The dataset is the result of a multimodel
ensemble prediction system developed by the CMA based on
the Community Land Model (CLM 3.5) of the US National
Center for Atmospheric Research (NCAR), the Common
Land Model (CoLM), the Noah-MP1-4 model, and high-
quality atmospheric forcing datasets that fuse data from the
FY2 geostationary meteorological satellite with intensive
ground observations collected at approximately 40000 au-
tomatic weather stations in China (Shi et al., 2011; Shen et
al., 2014). Validation shows that the product reflects the
temporal-spatial distribution of soil moisture reasonably
well. The correlation coefficient, RMSE, and bias values are
0.89, 0.02 m3 m−3, and 0.02 m3 m−3, respectively. The spatial
resolution of this product is 6 km, and its temporal resolution
is 1 h. The annual mean soil moisture estimates extending
from 2008 to 2010 at five depths (5, 10, 40, 80, and 200 cm)

over the TP were used in this study. Precipitation, which is a
component of the high-quality atmospheric forcing datasets,
was used directly in this study.

2.3.5 Terrain data
Two terrain-related variables, the digital elevation model
(DEM) and topography-derived PISR, were used in this
study. PISR was computed using the method proposed by
McCune and Keon (2002) based on a remotely sensed DEM,
i.e., the National Aeronautics and Space Administration
(NASA) Shuttle Radar Topographic Mission (SRTM) DEM
with a 1-km spatial resolution.

2.3.6 Ancillary data
To maintain the consistency of the lake distribution with the
environmental variables mentioned above, the water body
distribution from the MODIS land cover product
(MOD12Q1) and the glacier extent from the second Chinese
glacier inventory (Guo et al., 2015) were used as masks to
support the statistics of the permafrost area.

2.4 Accuracy assessment

2.4.1 Assessment of predicted MAGT
Three methods were used to evaluate the accuracy of the
predicted MAGT. First, the RMSE, bias, and coefficient of
determination (R2) were used to assess the performance of
the candidate model. These indexes were computed by dis-
tance-blocked 10-fold CV with 200 repetitions. Second,
following Aalto et al. (2018), the uncertainty of the predicted
MAGT was assessed by using two percentile indexes, med-
ian uncertainty (PI50) and the 95th percentile uncertainty
(PI95), which were calculated according to the percentile
intervals (PI, 97.5th–2.5th percentile) of ensemble simulated
MAGTover the TP. Third, extended triple collocation (ETC)
was used to investigate the relative error of the predicted
MAGT. Triple collocation (TC) is a powerful tool for esti-
mating the unknown RMSE for three of the same geophy-
sical variables retrieved using mutually independent methods
(Zwieback et al., 2012). It has been successfully applied to
the validation of remote sensing products and simulation
results (Fang et al., 2012; Dorigo et al., 2015). McColl et al.
(2014) extended the TC technique by deriving an additional
index, i.e., the correlation coefficient of the estimated result
with respect to an unknown “truth”. This metric provides a
complementary expression for the uncertainty of a simula-
tion result by integrating the sensitivity of the simulation
result with the unknown “true” value, measurement noise,
and variability of the variable itself (McColl et al., 2014).
We assume that the “true” MAGT value t and the three

measurements of MAGT can be represented as follows:

Y a b t= + + , (2)i i i i
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where Yi (i∈{1, 2, 3}) represents the three measurements of
MAGT, which are linearly related to t with additive random
errors εi. In this study, the three MAGT measurements in-
clude the predicted MAGT, in situ MAGT measurements
obtained at 237 boreholes, and the MAGT values predicted
by the improved Noah land surface model (Wu et al., 2018).
The Noah model is selected mainly because of its improve-
ment in data and physical processes, and it may have higher
accuracy. According to the situation of the TP, the Noah
model features improvements in the thermal roughness
scheme for sparse vegetation, the thermal conductivity
scheme for gravel, and the hydraulic conductivity scheme for
the impedance of soil water flow. The improved model was
examined and applied to model the MAGTat ZAA on the TP
using subsurface soil compositions, i.e., a new 18-layer soil
dataset with a total depth of 15.2 m. This 18-layer, 15.2-m-
deep simulation corresponded to the availability of soil data
(Wu et al., 2018).
The RMSE, i.e., the variance in the residual errors εi for

each data set, can be obtained by using the TC estimation
equation:

Y Y Y Y Y Y
Y Y

Y Y Y Y Y Y
Y Y

Y Y Y Y Y Y
Y Y

=

Cov( , ) Cov( , )Cov( , )
Cov( , )

Cov( , ) Cov( , )Cov( , )
Cov( , )

Cov( , ) Cov( , )Cov( , )
Cov( , )

, (3)

1 1
1 2 1 3

2 3

2 2
1 2 2 3

1 3

3 3
1 3 2 3

1 2

where Cov(Yi, Yj) is the covariance between the different
MAGT measurements.
The correlation coefficient of the three MAGT measure-

ments with respect to the unknown “true” MAGT values can
be obtained by using the ETC estimation equation:

r

Y Y Y Y
Y Y Y Y

Y Y Y Y Y Y Y Y
Y Y Y Y

Y Y Y Y Y Y Y Y
Y Y Y Y

=

Cov( , )Cov( , )
Cov( , )Cov( , )

Cov( , )Cov( , ) Cov( , )Cov( , )
Cov( , )Cov( , )

Cov( , )Cov( , ) Cov( , )Cov( , )
Cov( , )Cov( , )

. (4)t Y,

1 2 1 3

1 1 2 3

1 3 2 3
1 2 2 3

2 2 1 3

1 2 2 3
1 3 2 3

3 3 1 2

2.4.2 Assessment of permafrost extent
We validated the predicted permafrost extent by comparing it
with existing permafrost maps or investigation data at three
different scales. At the site scale, 237 boreholes (34 in the
zone of seasonal frost) were used to validate the different
permafrost maps covering the TP at the site scale to de-
termine whether the accuracy of the permafrost map obtained
in this study is higher than those reflected by the other maps,
i.e., Li and Cheng (1996), Nan et al. (2002), and Zou et al.
(2017). The updated permafrost distribution along the Qin-
ghai-Tibet Highway and Railway (QTR map) was used at the

local scale. At the regional scale, three permafrost distribu-
tion maps over the TP from Li and Cheng (1996), Nan et al.
(2002), and Zou et al. (2017), providing representative re-
sults from different periods, were used at the regional scale.
In particular, the map of Zou et al. (2017) integrated the
MODIS eight-day LST product using the TTOP model and
careful validation using ground investigation data.

3. Results

3.1 Variables for MAGT prediction

Combined with the importance ranking of 13 potential pre-
dictor variables based on %IncMSE, IncNodePurity, multi-
collinearity analysis, and empirical judgment, seven
variables, including FDD, TDD, LAI, SCD, elevation, soil
moisture, and soil bulk density, are selected to estimate
MAGT (Figure 4). %IncMSE and IncNodePurity generally
reflect the importance of the potential predictor variables,
which is consistent with our understanding for air-soil heat
balance mentioned in Section 2.2, except for SCD probably
due to the spatial representativeness of the samples. There
are few borehole samples in the key snow cover area. FDD
and TDD, as representative of the climate conditions, are
commonly used to map permafrost (Nelson and Outcalt,
1987; Aalto et al., 2018). The importance of elevation for
MAGT prediction is also well understood for permafrost on
the TP due to the altitudinal dependence of climate and local
ecosystem conditions, but the relationship is complex (Li and
Cheng, 1999). The importance of soil bulk density and soil
moisture content is well known to influence soil thermal
conductivity (Nelson and Outcalt, 1987). For the importance
of soil sand content and SCD, SCD was selected here based
on the understanding of its important influence on the soil-
atmosphere energy balance, as mentioned in Section 2.2. For
the seven variables selected here, the VIF is less than 5.
Although the statistical selection of predictor variables

may be affected by the uncertainty inherited with the data
used in this study, its consistency with previous knowledge
shows that the training sampling used in this paper can
capture the main factors controlling or influencing the dis-
tribution of ground temperature.

3.2 Model performance for predicting MAGT

CV of 200 runs shows that the five statistical learning tech-
niques (GLM, GAM, SVR, RF, and GWR) and their en-
semble mean all achieved high accuracy. Except for the
GAM, the techniques showed no significant difference in
predictions. However, the mean values of the three statistical
indicators, i.e., RMSE, bias, and R2, show that the ensemble
mean is more accurate than any single model, although SVR
yielded a predictive performance similar to that of the en-
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semble mean of the five models (RMSE=0.75°C, bias
=0.01°C, R2=0.71; Table 2). Therefore, SVR was used to
estimate the MAGT in this study.
The predicted MAGT and the corresponding distribution

of permafrost thermal stability over the TP were generated
based on 200 runs of the SVR model, as shown in Figures 5
and 6. The median uncertainty (PI50) and 95th percentile
uncertainty (PI95) of the predicted MAGT are ±0.65°C and
±2.25°C over the TP, respectively. This uncertainty indicates
that the low instability of the SVR model may come from
ground measurement data of MAGT and predictor variables.
The map shows the detailed distribution of permafrost on the
TP. The specific distribution characteristics are described in
Section 3.3. The assessment of relative accuracy can be
found in Section 3.4.

3.3 Permafrost distribution characteristics on the TP

3.3.1 General distribution characteristics of permafrost
This map shows that the total area of permafrost, excluding
glaciers and lakes, is approximately 115.02×104 km2. The
areal extents of very stable, stable, semi-stable, transitional,
and unstable types are 0.86×104, 9.62×104, 38.45×104, 42.29
×104, and 23.80×104 km2, respectively (Table 3). These re-
sults indicate that the transitional type dominates the per-
mafrost region on the TP. The total areas occupied by
permafrost in the Tibet Autonomous Region, Qinghai Pro-

vince, Xinjiang Uygur Autonomous Region, Sichuan, Gansu
and Yunnan provinces are 52.13×104, 34.45×104, 21.85×104,
3.66×104, 2.73×104, and 0.21×104 km2, respectively. In the
Tibet Autonomous Region, Qinghai, and Gansu provinces,
permafrost is dominated by transitional permafrost. The
Xinjiang Uygur Autonomous Region and Sichuan Province
are dominated by the semi-stable and unstable types, re-
spectively.
Overall, the very stable and stable permafrost types are

mainly distributed in high mountains, especially in the Qi-
lian, West Kunlun mountains, and Karakoram mountains.
The semi-stable permafrost, along with the lower limit of the
stable permafrost type, is mainly found in the Qiangtang
Plateau, West Kunlun, and Qilian Mountains. The transi-
tional type is mainly distributed along the Qinghai-Tibet
Railway and in the source area of the Yellow River. Finally,
unstable permafrost is mainly distributed in the southern part
of the Qiangtang Plateau, along the Qinghai-Tibet Railway
and in the eastern part of the Three Rivers Headwaters re-
gion.

3.3.2 Elevation and aspect characteristics of permafrost
thermal stability
Figure 7 shows the permafrost area and the fractions of
different stability types along with elevation and aspect (i.e.,
north-facing and south-facing slopes) on the TP. Permafrost
occurs above 2000 m above sea level (asl) and is mainly
distributed between 4000–5500 m, with a peak at approxi-
mately 5000 m. Permafrost below 4000 m accounts for ap-
proximately 8.2% of the total permafrost on the TP (Figure
7a). The thermal stability of permafrost on the TP increases
with increasing elevation. The mean elevations of the very
stable, stable, semi-stable, transitional, and unstable types
are 5497, 5189, 4967, 4767, and 4612 m asl, respectively.
More than 90% of the very stable, stable, semi-stable, tran-
sitional, and unstable permafrost types are distributed above
3700, 4000, 4200, 4500, and 4900 m asl, respectively (Fig-
ure 7b–7f).
The altitudinal variations in permafrost distribution are

also dependent on aspect. Figure 7 shows that the aspect
mainly acts on the permafrost distribution below 5100 m asl,
where the area of permafrost developed on north-facing
slopes is larger than that on south-facing slopes because
north-facing slopes likely receive less solar radiation than
south-facing slopes. Above 5100 m asl, elevation controls

Figure 4 The importance ranking of potential predictors used to estimate
MAGT based on the random forest method. IncMSE, increased mean
squared error. IncNodePurity, increased node purity.

Table 2 . The predictive performance of mean annual ground temperature (MAGT) for five statistical models and their ensemble meana)

Performance measures GLM GAM SVR RF GWR Ensemble
RMSE (°C) 0.76±0.20 0.81±0.26 0.75±0.21 0.78±0.20 0.77±0.22 0.75±0.20
Bias (°C) 0.00±0.23 0.01±0.26 0.01±0.22 0.00±0.25 –0.01±0.23 0.00±0.23

R2 0.70±0.15 0.68±0.16 0.71±0.15 0.69±0.15 0.69±0.17 0.71±0.15

a) GLM, generalized linear model; GAM, generalized additive model; SVR, support vector regression; RF, random forest; GWR, geographically weighted
regression. RMSE, bias, and R2 with 1 standard deviation
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the permafrost distribution. In general, the fraction of per-
mafrost on north- and south-facing slopes accounts for

48.7% and 46.3%, respectively, and the remainder is dis-
tributed in flat terrain (Figure 7b–7f). Additionally, the alti-

Figure 5 Map of predicted mean annual ground temperature (MAGT) on the Tibetan Plateau.

Figure 6 Map of the thermal stability of permafrost on the Tibetan Plateau.
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tudinal dependence of the permafrost distribution is also
related to latitude and longitude, but these factors have a
relatively weak influence. In a similar elevation range, the
permafrost at high latitudes has a higher stability level,
which is relatively obvious on the Qiangtang Plateau.

3.3.3 Permafrost stability along the Qinghai-Tibet Rail-
way
The Qinghai-Tibet Railway is a major engineering corridor.
According to the new maps proposed in this study, along the
10-km-wide engineering corridor of the Qinghai-Tibet
Railway from Golmud to Lhasa (with a total length of ap-

proximately 1118 km), the permafrost area accounts for
58.43% of this region and is dominated by semi-stable,
transitional, and unstable permafrost types. The areas (and
proportions) of the semi-stable, transitional and unstable
permafrost types are 1185 (10.8%), 3497 (31.87%), and
1650 km2 (15.4%), respectively.

3.4 Relative accuracy

3.4.1 Relative accuracy of the predicted MAGT
The comparison of RMSE and correlation coefficients esti-
mated by using ETC (eqs. (3) and (4)) for the MAGT from

Table 3 Areal extents of permafrost thermal stability types in different administrative regions on the Tibetan Plateaua)

Stability type Tibet
(×104 km2)

Qinghai
(×104 km2)

Xinjiang
(×104 km2)

Sichuan
(×104 km2)

Gansu
(×104 km2)

Yunnan
(×104 km2)

Total area
(×104 km2)

Very stable 0.16 0.04 0.65 0.00 0.01 0.00 0.86

Stable 3.07 1.66 4.68 0.01 0.21 0.00 9.62

Semi-stable 18.27 10.14 8.84 0.28 0.92 0.00 38.45

Transitional 19.77 14.76 5.23 1.50 0.95 0.08 42.29

Unstable 10.86 7.85 2.46 1.88 0.64 0.12 23.80

Total area 52.13 34.45 21.85 3.66 2.73 0.21 115.02

a) Excluding glaciers and lakes

Figure 7 The permafrost area and the fractions of different stability types in each elevation interval and the accumulated fraction with elevation on the
Tibetan Plateau.
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borehole measurements, the output of the Noah land surface
model, and the predicted result of this study show that the
RMSE for the predicted MAGT in this study is the lowest,
and the squared correlation coefficient is the highest (Figure
8). These results indicate that the uncertainty in the predicted
MAGT in this paper may be the smallest with respect to the
unknown “true” MAGT at the grid scale. The larger un-
certainty in the ground MAGT measurement than in the
predicted MAGT is probably due to the greater spatial re-
presentativeness error of the in situ measurements at the grid
scale, while the grid-based model reduces the representa-
tiveness error by considering grid-scale heterogeneity (Li,
2014).
Although it exhibits the smallest residual error variance

and the highest squared correlation coefficient, the pre-
dicted MAGT in this paper still includes some potential
uncertainties. These uncertainties mainly arise from the
representativeness of the borehole locations and the po-
tential error of predictor variables. First, although the
MAGT measurements at the 237 boreholes were integrated
into the modeling process and this number of measurements
is greater than those used in any previous study, these
boreholes are mainly distributed in relatively low-elevation
areas, and measurements in high-elevation regions are still
generally unavailable. A broader scientific challenge in-
volving more accurately simulating the MAGT requires
further data accumulation and optimization of the ob-
servational network design to improve the spatial re-
presentativeness of borehole data at both the grid scale and
the TP scale.

3.4.2 Relative accuracy of permafrost extent
The comparison of permafrost distribution at the three
different scales studied here shows that the permafrost
distribution produced by this study is more accurate and
reasonable than those produced by previous maps. At the
site scale, 84% of the 237 boreholes examined are con-
sistent with the map of this study, while the proportions in
the maps of Li and Cheng (1996), Nan et al. (2002), and

Zou et al. (2017) exhibit consistencies of only 68%, 28%,
and 81%, respectively. At the local scale, as shown in
Figure 9e, the permafrost distribution obtained by this
study is very close to that in the QTR map. At the regional
scale, this comparison shows that the patterns of perma-
frost distribution are generally similar among the three
maps of permafrost distribution on the TP (Li and Cheng,
1996; Nan et al., 2002; Zou et al., 2017). The differences
are small, especially when the results of this study are
compared with the new permafrost distribution map de-
veloped by Zou et al. (2017). As shown in Figure 9a–d, the
main differences exist within four regions, including the
region of Gerze, west of the Kailas Range, the region to the
east of Lhasa, and the eastern TP. The differences relative
to Nan’s map in the region of Gerze and the region to the
east of Lhasa are mainly derived from the uncertainty as-
sociated with Nan’s map because the permafrost distribu-
tion in this map was based on MAGT measurements
obtained from just 76 sites along the QTR and a DEM. In
the region of Gerze, recent surveys have shown that the
lower limit of permafrost lies farther north than that de-
rived from the published permafrost map (Nan et al., 2013;
Ran et al., 2018). This survey indicates that the permafrost
distributions in this study and Zou et al. (2017) are more
accurate than those in previous maps. In the region east of
Lhasa, where glaciers and snow cover are present, no
survey data are currently available. However, permafrost
distribution may be underestimated by the elevation-based
MAAT or MAGT interpolation method used for previous
maps (Li and Cheng, 1996; Nan et al., 2002) because the
average elevation of this region is relatively low but the
temperature is low (Ran et al., 2015; Ran et al., 2018). The
permafrost extent in this study is very similar to the latest
results presented in Zou et al. (2017) for this region. In the
eastern region of the TP, two recent surveys in the Bayan
Har Mountains by Luo et al. (2018b) and Zou et al. (2017)
both showed that the extent of permafrost was over-
estimated by Li and Cheng (1996).

Figure 8 The RMSE (a) and correlation coefficient (b) estimated by using extended triple collocation for in situ borehole MAGT measurements, the MAGT
output of the Noah land surface model, and the predicted MAGT of this study.
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3.5 The MALST and SFN criteria for mapping the
thermal stability of permafrost

The criteria of MAGT, MAAT and permafrost thickness are
defined only to distinguish the different permafrost stability
types (Cheng, 1984). As mentioned in Section 2.1, it is very
difficult to monitor the MAGTand permafrost thickness, and
it is even more difficult to obtain long-term, continuous and
spatially dense measurements over a large area. Therefore,

the MAAT is typically used as a reference to indicate the
occurrence of permafrost (Ran et al., 2015), although it is not
an optimal predictor of permafrost thermal stability. Stations
where MAAT data are measured are also very sparse in many
permafrost areas. Therefore, criteria involving remotely
sensed values of MALST and SFN were defined to char-
acterize permafrost thermal stability by comparing the per-
mafrost thermal stability map generated in Section 3.2 with
the MALST and SFN values produced using the method

Figure 9 Intercomparisons of permafrost extents among this study (a) and existing maps at the regional scale ((b), Li and Cheng, 1996; (c), Nan et al., 2002;
(d), Zou et al., 2017) and the updated permafrost distribution along the Qinghai-Tibet Highway and Railway (e).
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described in Section 2.3.2. The 5th and 95th percentiles are
used to define the range of MALST and SFN for each per-
mafrost thermal stability type (Table 4). Table 4 shows that
the lower limit of permafrost corresponds to a MALST value
of 1.1°C and an SFN value of 0.45. These values can be used
to distinguish permafrost from seasonal frost on the TP. The
MALST values at the boundaries between stability types are
systematically higher than the MAATcriteria shown in Table
1. This systematic difference varies with the stability types
being considered. The standard deviation is approximately
2.6°C for the MALST and 0.1 for the SFN, which indicates
the spatial differences in this criterion. Referring to the
permafrost thermal stability map derived from simulated
MAGT (Figure 6), the consistency of the results derived
from MALST and SFN using the criteria proposed here is
69.6% and 75.3%, respectively, on the basis of thermal sta-
bility type and 90.1% and 91.8%, respectively, on the basis
of permafrost extent.
Of course, it is not the best choice to classify permafrost

types by using the MALST and SFN criteria proposed here
due to the complex relationship between ground temperature
and remote sensing-based LST, as mentioned at the begin-
ning of Section 2.2 and in several previous studies (Luo et
al., 2018a). However, it should be workable as an alternative
areas with little or no data, such as the TP, where the low and
sparse vegetation and thin snow cover may have relatively
little influence, especially in the western part of the TP.
Overall, this criterion improved the ability to use remotely
sensed LST data, instead of MAAT data, to monitor per-
mafrost stability on the TP.

4. Discussion

4.1 Total permafrost area on the TP

We summed the reported total areas of permafrost over the
TP, which are shown in Table 5. The total areas indicated by
several permafrost maps published in the past several dec-
ades were recalculated based on the digital version (Ran et
al., 2012) and the corresponding ancillary data used in this
study, including a map of the distribution of water bodies and
glaciers. The differences in the research periods of different
studies are ignored based on the assumption that the total
area of permafrost over the TP has remained approximately
constant over the past 30 years. This assumption holds be-
cause there is no direct evidence of permafrost loss except in
a few engineering fields over the TP. Comparing these areas
with the high-resolution maps produced in recent years by
using the empirical frozen soil model, such as the three
permafrost maps for the TP (Li and Cheng, 1996; Nan et al.,
2002; Zou et al., 2017), it is evident that the differences
between them are small. The total areas derived from the
map in this study are also similar to those of the new map of
permafrost extent (Zou et al., 2017) and predicted results
using the improved Noah land surface model (Wu et al.,
2018). However, the differences between this study and the
permafrost maps covering China produced by Shi (1988) and
Qiu et al. (2000) are large. These large differences are mainly
derived from the differences in the map scales and classifi-
cation systems used. First, because areal continuity-based
classification systems are used in these maps, the permafrost
extent implies the extent of the permafrost region. In other

Table 4 Remote sensing criteria used to identify the permafrost stability types on the Tibetan Plateau

Permafrost stability type Remotely sensed mean annual land surface temperature (°C) Remote sensing LST-based surface frost number

Very stable <−6.0 >0.75

Stable −3.50 to −6.0 0.64–0.75

Semi-stable −1.40 to −3.50 0.56–0.64

Transitional 0.30 to −1.40 0.50–0.56

Unstable 1.10–0.30 0.45–0.50

Table 5 Permafrost area over the Tibetan Plateau from various sourcesa)

Map name Permafrost area (×104 km2) Reference

Map of Snow, Ice, and Frozen Ground in China (1:4000000) 154.25 Shi, 1988

Permafrost Map of the Qinghai-Tibet Plateau (1:3000000) 127.19 Li and Cheng, 1996

Map of Geocryological Regionalization and Classification in China (1:10000000) 161.50 Qiu et al., 2000

Map of Glaciers, Frozen Ground and Deserts in China (1:4000000) 122.68 Nan et al., 2002; Wang, 2006

Simulation results using CLM4 for 1980–2000 122.20 Guo et al., 2012

Simulation results using improved Noah model 111.30 Wu et al., 2018

New permafrost extent map in Tibetan Plateau 106.00 Zou et al., 2017

New permafrost stability map over Tibetan Plateau 115.02 (105.47–129.59)* This study

a) Excluding glaciers and lakes. *, the uncertainty in permafrost area was quantified by using the percentile intervals (PI, 97.5th–2.5th percentile) of
ensemble simulated MAGT based on the SVR model with 200 runs.
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words, not all of these regions are underlain by permafrost.
For example, in terms of the areal fraction or continuity, the
map of Qiu et al. (2000) shows that the actual permafrost
area on the TP is approximately 129.9×104 km2 (Zhao et al.,
2004), which is close to the result of this study. Second,
considering only the data and mapping techniques used, the
permafrost extents in the existing maps were determined
based on the empirical judgment of the authors, except for
the maps of Nan et al. (2002) and Zou et al. (2017), and the
predicted results of the two empirically based models.
However, the mapping of permafrost is heavily dependent on
the availability of high-quality data (Heginbottom, 2002).
Furthermore, the actual permafrost extent (not the permafrost
region) can be more objectively determined by using com-
prehensive, abundant, and high-quality data, especially re-
mote sensing-based LST measurements and SCD values.
Therefore, the small differences between the results of this
study and those of other published maps should be more
credible, primarily because these maps integrate larger
amounts of survey data, and more accurate results can be
obtained at higher resolutions (Ran et al., 2012; Ran and Li,
2019).

4.2 Potential applications of the new map

The permafrost stability map proposed in this study is based
on more survey data than any previous map covering the TP.
It has the potential to support the planning and design of
engineering structures for the reduction of permafrost-related
hazards and to improve ecosystem management. Thus, it can
be used to enhance the social and ecosystem adaptability to
the degradation of permafrost. First, degradation of perma-
frost may lead to reductions in the stability of settlements and
mountain slopes (Harris et al., 2001). Thus, engineering
planning, optimization, and design in permafrost regions are
required to understand the present-day thermal stability of
permafrost in different areas. Many studies have shown that
the degradation of very stable and stable permafrost may be
in the initial stage or a stage of temperature increase, and the
thermal inertia of such areas may correspond to tens of
thousands of years (Jin et al., 2006). On the other hand,
unstable permafrost may be in a stage characterized by a
near-zero geothermal gradient and is rapidly thawing up-
wards (Wu et al., 2010). These permafrost types with dif-
ferent stabilities may require different engineering measures
to improve the stability of the substrate and reduce perma-
frost-related hazards. For very stable and stable permafrost,
general engineering measures may be able to mitigate per-
mafrost thawing. However, enhanced measures may be
needed for the transitional and unstable permafrost types. For
example, within areas of transitional and predominantly
unstable permafrost types along the Qinghai-Tibet en-
gineering corridor, a series of proactive roadbed cooling

engineering measures have been successfully applied in the
design and construction of the Qinghai-Tibet Railway. These
measures include solar radiation control by using shading
boards, heat convection control using air ducts, thermosy-
phons and air-cooled embankments, and heat conduction
control by using “thermal semiconductor” materials such as
crushed rock embankments (Cheng et al., 2008). These en-
hanced and proactive cooling methods have successfully
lowered the ground temperature and the permafrost table
under the roadbed of the Qinghai-Tibet Railway and have
helped to stabilize the railway (Cheng, 2004, 2005). Second,
the permafrost stability map presented in this study, which
has better accuracy and resolution than previous products,
can be used to support the assessment of water resource
vulnerability on the TP. In general, the presence of perma-
frost increases the complexity of interactions between sur-
face water and groundwater. The type and thermal stability
of permafrost are closely related to the availability of water
resources (Alessa et al., 2008) and can be used to support a
better understanding of the environmental effects of perma-
frost degradation in a changing world. Additionally, as a
baseline, the new dataset, including MAGT and a thermal
stability map, can be used to evaluate the permafrost change
in the future on the TP.

5. Summary and conclusions

We test the importance ranking of 13 potential predictor
variables using the RF technique and found that FDD, TDD,
LAI, SCD, elevation, soil moisture, and soil bulk density are
the most important factors in the estimation of MAGT. Five
statistical learning techniques (GLM, GAM, SVR, RF, and
GWR) and their ensemble mean all achieved high accuracy
for the prediction of MAGT, but the performance of SVR
was similar to that of the ensemble mean of the five models
(RMSE=0.75°C, bias=0.01°C, R2=0.71). Therefore, a new
and higher-resolution permafrost stability map covering the
TP for the 2010s (2005–2015) was developed with 200 re-
petitions of the SVR model based on distance-blocked re-
sampling training data from in situ MAGT measurements
obtained at 237 borehole locations distributed across the TP.
Both direct and indirect validations show that the accuracy
and reliability of this map are higher than those of previous
maps. According to this map, the total area of permafrost on
the TP, excluding glaciers and lakes, is approximately
115.02×104 km2. The areas corresponding to the very stable,
stable, semi-stable, transitional, and unstable types are 0.86
×104, 9.62×104, 38.45×104, 42.29×104, and 23.80×104 km2,
respectively. The new permafrost stability map is of funda-
mental importance for supporting engineering planning and
design measures intended to reduce permafrost-related ha-
zards and to enhance water resource management. The si-
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mulated MAGT and permafrost stability map in this study
can be downloaded at https://www.doi.org/10.11888/Geogra.
tpdc.270672. A criterion involving remote sensing-based
MALST and SFN values was also defined to classify the
permafrost stability type, thus providing a basis for the rapid,
low-cost, and high-resolution monitoring of permafrost sta-
bility on the TP and in other permafrost regions using remote
sensing data in the future.
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