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Land cover type is a crucial parameter that is required for various land surface mod-
els that simulate water and carbon cycles, ecosystem dynamics, and climate change.
Many land use/land cover maps used in recent years have been derived from field 10
investigations and remote-sensing observations. However, no land cover map that is
derived from a single source (such as satellite observation) properly meets the needs
of land surface simulation in China. This article presents a decision-fuse method
to produce a higher-accuracy land cover map by combining multi-source local data
based on the Dempster–Shafer (D–S) evidence theory. A practical evidence genera- 15
tion scheme was used to integrate multi-source land cover classification information.
The basic probability values of the input data were obtained from literature reviews
and expert knowledge. A Multi-source Integrated Chinese Land Cover (MICLCover)
map was generated by combining multi-source land cover/land use classification
maps including a 1:1,000,000 vegetation map, a 1:100,000 land use map for the year 20
2000, a 1:1,000,000 swamp-wetland map, a glacier map, and a Moderate-Resolution
Imaging Spectroradiometer land cover map for China in 2001 (MODIS2001). The
merit of this new map is that it uses a common classification system (the International
Geosphere-Biosphere Programme (IGBP) land cover classification system), and it has
a unified 1 km resolution. The accuracy of the new map was validated by a hybrid pro- 25
cedure. The validation results show great improvement in accuracy for the MICLCover
map. The local-scale visual comparison validations for three regions show that the
MICLCover map provides more spatial details on land cover at the local scale com-
pared with other popular land cover products. The improvement in accuracy is true
for all classes but particularly for cropland, urban, glacier, wetland, and water body 30
classes. Validation by comparison with the China Forestry Scientific Data Center
(CFSDC)–Forest Inventory Data (FID) data shows that overall forest accuracies in five
provinces increased to between 42.19% and 88.65% for our MICLCover map, while
those of the MODIS2001 map increased between 27.77% and 77.89%. The validation
all over China shows that the overall accuracy of the MICLCover map is 71%, which 35
is higher than the accuracies of other land cover maps. This map therefore can be used
as an important input for land surface models of China. It has the potential to improve
the modeling accuracy of land surface processes as well as to support other aspects of
scientific land surface investigations in China.

AQ1

Keywords: land cover; data fusion; remote sensing; land surface modeling; China 40

*Corresponding author. Email:lixin@lzb.ac.cn

ISSN 1365-8816 print/ISSN 1362-3087 online
© 2011 Taylor & Francis
DOI: 10.1080/13658816.2011.577745
http://www.informaworld.com



2 Y. Ran et al.

1. Introduction

Land cover plays a significant role in earth system science and reflects the influence of
human activities and environmental change (IGBP 1990, DeFries et al. 1995, Sellers et al.
1997, Bonan et al. 2002, 2003, Aspinall and Justice 2003). These changes in land cover AQ2
affect the function and structure of land surface processes such as energy exchange, the 45

water cycle, the biogeochemical cycle, and vegetation productivity (Hederson-Sellers and
Wilson 1983, Crutzen and Andreae 1990, Keller et al. 1991, Turner et al. 1995). Therefore,
accurate land cover maps are the foundation for land surface, ecological and hydrological
modeling, carbon- and water-cycle studies, and research on global climate change (IGBP
1990, Sellers et al. 1997). Many parameters in a land surface model are assigned based 50

on the land cover types; examples are the time-invariant model variables (e.g., vegetation
reflectance, canopy top height, canopy base height, root depth, and leaf respiration factor)
in the SIB2 (Simple Biosphere Model 2) and the CoLM (Common Land Model) (Sellers
et al. 1996, Dai et al. 2001).

Many global-, continental-, and regional-scale land use/land cover maps have been 55

produced in recent years using remote-sensing data. Among them, four land cover maps are
very popular. These are the Version 2 International Geosphere-Biosphere Programme Data
and Information System global land cover data set (IGBPDISCover) map (Loveland et al.
2000), the land cover map of the University of Maryland (UMd) (Hansen et al. 2000), the
Global Land Cover map from the European Commission Joint Research Centre (GLC2000) 60

(Bartholome and Belward 2005), and the Moderate-Resolution Imaging Spectroradiometer
(MODIS) global land cover map products (Friedl et al. 2002). Ran et al. (2010) evaluated
the China portions of the four global land cover maps and concluded that none of the four
maps met the needs of land surface simulations of China. For China, a 1:100,000 land use
map (Liu 1996, Liu et al. 2002, 2003a) and a 1:1,000,000 vegetation map (Hou 2001) are 65

available along with other relevant data. Although they offer important land cover informa-
tion, these data have different purposes and classification systems that are not necessarily
compatible with the needs of land surface modeling. Therefore, this study undertakes the
important task of determining how to fuse these data into new and more accurate land
cover maps with a common classification system that can be used in land surface models. 70

Dempster–Shafer (D–S) evidence theory (Dempster 1967, Shafer 1976) is a method of
inexact reasoning. It is based on the recognition that the knowledge and information (such
as land cover classifications) used in decision-making is often uncertain, incomplete, and
imprecise. Recently, a new development of D–S evidence theory was proposed in computer
science (Wu et al. 2002, Lu and Ye 2005). This new development can reduce some of the 75

fuzzy and contradictory evidence used in data analysis. Evidence theory has been used in a
variety of land cover case studies (Peddle 1995, Comber et al. 2004, Soh et al. 2004, Cohen
and Shoshany 2005, Cayuela et al. 2006, Sun et al. 2008, Cao et al. 2009), but it has not
been widely applied to large areas and with integrated land cover classification information
(i.e., discrete information). 80

In this article, the primary objective of the land cover mapping is to facilitate the extrac-
tion of biogeophysical information from land cover for use in regional and global modeling
studies. Thus, the specific land cover classification units must not only be discernible (and
with high accuracy) from remotely sensed and ancillary data but also be directly related
to the physical characteristics of the surface (primarily to the surface vegetation). A set of 85

17 such global land cover classes has been developed specifically for this purpose by the
IGBPDIS in conjunction with the IGBP Core Projects (Belward 1996). The IGBP classifi-
cation system is widely accepted and applied to the classification of global or regional land
cover maps and is also used in land surface process modeling.
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This article aims to produce a highly accurate land cover map of China with a common 90

classification system (i.e., the IGBP classification system) by developing a simple and prac-
tical decision-fuse method based on the D–S evidence theory for fusing multi-source land
cover classification information over China. The article is organized as follows. Section 1
discusses the existing land cover maps of China and the rationale and objectives of the arti-
cle. Section 2 introduces the input and reference data, and Section 3 presents the method 95

of fusing the data along with data processing. Section 4 presents the results, along with an
evaluation of the uncertainty and accuracy of the resultant map as compared to other land
cover maps, and a validation of the map using the reference data introduced in Section 2.
Section 5 discusses the article’s findings and provides conclusions.

2. Materials 100

The IGBP land cover classification scheme is treated in this article as a common classifica-
tion system. This set of land cover types includes 11 categories of natural vegetation broken
down by life form, 3 classes of developed and mosaic lands, and 3 classes of nonvegetated
lands. The classification system is presented in Table 1.

Five relevant land cover data sets were used in this study. They include a 1 km land 105

use map of China at a 1:100,000 scale from the year 2000 land use database (Liu et al.
2002), a 1:1,000,000 vegetation map of China (Hou 2001), a 1:100,000 glacier distribution AQ3
map (Wu and Li 2004, Shi 2005), a 1:1,000,000 swamp map of China (Zhang 2002), and
the MODIS global 1 km land cover classification product for 2001 (MODIS2001) (Hodges
et al. 2001, Friedl et al. 2002). These five data sets were converted to raster format with 110

a common spatial resolution (1 km) and were integrated to produce a new land cover map
with the IGBP classification system.

The classification systems of the five data sets are not compatible with commonly
used land surface models. These data sets contain unique characteristics but also com-
plement each other for use in the IGBP land cover scheme. The 1 km land use map of 115

China was derived from the 1:100,000 land use database; its 1 km grid was geocoded
using the greatest-area method (i.e., if a cell has more than one possible code – i.e., it con-
tains two or more polygons – the code of the polygon with the greatest area in the cell is

Table 1. The IGBP land cover classification system (Belward 1996).

S.No. Class name

1 Evergreen needleleaf forest
2 Evergreen broadleaf forest
3 Deciduous needleleaf forest
4 Deciduous broadleaf forest
5 Mixed forest
6 Closed shrublands
7 Open shrublands
8 Woody savannas
9 Savannas
10 Grasslands
11 Permanent wetlands
12 Croplands
13 Urban and built-up lands
14 Cropland/natural vegetation mosaics
15 Snow and ice
16 Barren or sparsely vegetated lands
17 Bodies of water



4 Y. Ran et al.

used). The 1:100,000 land use database was derived by manual interpretation of Landsat
multispectral scanner (MSS), thematic mapper (TM), and enhanced TM (ETM) images. AQ4

120
The boundaries of the land use types were delineated based on the interpreters’ under-
standing of spectral reflectance, texture, and terrain, along with other information about
land objects. Subsequently, the attributes (labels) of the polygons were labeled to produce
the digital map, and the vector digital maps were edited and compiled (Liu 1996). The AQ5
database was validated by intensive field surveys including an accumulated survey length 125

of 75,271 km across China. The overall accuracy of the land use map is 95% for 25 land
use classes (Liu et al. 2005). However, the land use data are based on a tiered classifi-
cation system that lacks information about vegetation types and seasonal characteristics,
and they could not be used in land surface models. The vegetation map of China supplies
information on vegetation types and seasonal characteristics that is lacking in the land use 130

data. The vegetation map of China was developed based on many forest inventories and
vegetation survey data that were collected over half century. These data were combined
with airborne and satellite remote-sensing images and data from geology, soil, and climate
studies. Therefore, the vegetation map of China reflects detailed distributions of vegetation
and includes horizontal and vertical zones of 11 vegetation groups, 54 vegetation types, 135

and 796 biome and sub-biome units (Hou 2001). The MODIS2001 map provides consis-
tent global land cover classification information. The 1:100,000 glacier distribution map
and the 1:1,000,000 swamp map offer accurate information on the distribution of glaciers
and permanent wetlands in China.

The Forest Inventory Data (FID) at the province scale from the China Forestry 140

Scientific Data Center (CFSDC) (http://www.cfsdc.org) were developed around 2000 and
were used as reference data to validate the results of this study. The CFSDC-FID data were
the results of the most comprehensive forest-resource inventory in China (Lei et al. 2009).
They were produced by the Chinese Academy of Forestry, State Forestry Administration
of China (CAF-SFA) by integrating the National Forest Continues Inventory and the Forest 145

Management Inventory. The merits of the two inventories are that they combine high-
resolution satellite data (e.g., TM/ETM images) with field surveys at the county level.
Additional technical details can be found in the references (SFA 2004). The reason to
choose the FID data as reference data is that it identifies forests in China with the high-
est leaf-form accuracy (i.e., the data provide high-accuracy classifications of needleleaf 150

forests, broadleaf forests, mixed forests, and shrublands). In addition, this is the most
authoritative forest distribution map in China.

3. Methods

The D–S theory was used to combine the five sources of evidence. This method is an exten-
sion of Bayesian probability theory and allows for the quantification and management of 155

data uncertainty (Gordon and Shortliffe 1985, Lee et al. 1987). The basic assumptions
of D–S theory are that gaps exist in the body of knowledge and that belief in a hypoth-
esis is not necessarily the complement of belief in its negation. In land cover mapping,
D–S theory offers several advantages over traditional classification methods (such as a
maximum-likelihood classifier). It has the ability to handle the data that may violate the 160

Gaussian assumption and the data from any number of sources at any scale of measurement
(Sun et al. 2008).

3.1. The D–S evidence theory

The basic concept of evidence theory is the frame of discernment, denoted by θ . The
selection of θ depends on the known knowledge and the level of understanding as well 165
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as what we want to know. In image classification, θ corresponds to the categories of the
classification system. For example, the IGBP classification system is a set of 17 elements
corresponding to the 17 IGBP land cover types.

The computing elements of D–S theory are the power set 2θ . Note that there is a one-
to-one correspondence between the elements of 2θ and the subsets of θ . A singleton set is 170

one with only one class. The degree of belief in the evidence from a source (e.g., a land use
class) in support of an IGBP class is referred to as the mass (m) committed to that class.
The amount of mass is often referred to as an evidence measure. A mass can be expressed
as a mass function that maps each element of the power set into a real number from 0 to 1,
with a larger value indicating a higher level of ‘belief’ that expresses the degree to which 175

a pixel belongs to a class. A mass function meets the following conditions:

{
m (φ) = 0∑
A⊆2θ

m (A) = 1 (1)

where φ is the null set or an empty set and m(A) is a basic probability assignment (BPA)
that represents the support for every subset, A. In this study, the subjects of interest are
singleton sets or individual classes; therefore, it is necessary to use θ instead of 2θ .

3.2. Generating evidence for each IGBP class 180

The five land cover data sets were converted to evidence and were then fused according to
D–S rules of evidence combination. Transforming input data into evidence (or basic belief)
is a critical step in generating evidence (Peddle 1995). The D–S rule of evidence combi-
nation determines the final degree of belief in a hypothesis class through combining the
basic beliefs. Commonly, two methods are used to assign the basic probability, including 185

the BPA function and expert knowledge. In this study, the discrete variable (i.e., land cover
type) was treated as an input data, and it is difficult to determine a function representing
the support for real classification. Therefore, the evidence, or the degree of support to each
IGBP class from each data source, includes two parts:

Mi,j = Ei,j × Ci,j (2)

where E is the data accuracy represented by the proportional error and based on the vali- 190

dation or evaluation of each input data from other research, C is the correlation coefficient
between each class of input data and the class from the IGBP classes, the subscript i is the
input data number, and the subscript j is the IGBP class number as described in Section 2.

The parameter E was obtained from literature reviews (Hou 2001, Zhang 2002, Liu
et al. 2003a, Wu and Li 2004). The accuracy of all input data, including the 1 km land 195

use map, the vegetation map, the glacier distribution map, and the swamp map, but with
the exception of the MODIS2001 map, was unified at 95%. The four input data sources
represent an accumulation of a large volume of research results over many years in China;
they are now widely accepted in the scientific community as highly accurate data sets.
However, the determinate method of accuracy of the MODIS2001 was different and was 200

identified with a modified evaluation result by Ran et al. (2010).
The parameter C defines the relationship between the input-data class and the IGBP

class; in this study, it was identified through expert knowledge. The correlation coefficients
between the vegetation classes and the IGBP classes were determined by the relationships
(shown in Table 2) between Chinese vegetation types and IGBP classes. These correla- 205

tions are explicit for some types but are ambiguous for others. For example, the vegetation
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type ‘broadleaf deciduous forests in a temperate zone’ has an explicit correlation with
IGBP class 4, ‘deciduous broadleaf forest,’ and the correlation coefficient was assigned 210

as 1. The vegetation type ‘needleleaf forests in a cold-temperate zone and on mountains
in a temperate zone’ does not have a clearly corresponding class; using the information
from evergreen and deciduous types, we assigned this vegetation type to IGBP class 1
(i.e., evergreen needleleaf forest) and IGBP class 3 (i.e., deciduous broadleaf forest) with
correlation values of 0.5 in each case. In this process, the opinions of vegetation experts 215

played an important role.
The correlation coefficients between the Chinese land use classes and the IGBP classes

were also identified (Table 3). As is the case for the vegetation types, this correlation is
explicit for some types but is ambiguous for others. For example, the definition of paddy
land and dryland in the Chinese land use map is explicit and corresponds to the cropland 220

class definition in the IGBP, which results in a correlation coefficient of 1. As defined
in the China land-source classification system, shrublands are lands covered by trees less
than 2 m high and with a canopy cover of >40%. This class is related to closed shrublands
(6) and open shrublands (7) in the IGBP classification system. However, the definition of
canopy cover is closer to closed shrublands than it is to open shrublands; thus, the corre- 225

lation coefficients between shrublands in the China land-source classification system and
closed shrublands and open shrublands in the IGBP classification system were assigned as
0.6 and 0.4, respectively. Most correlation coefficients were assigned using these methods,
with the exceptions of ‘forest’ and ‘other forest’ in the China land-source classification

Table 3. The correlation coefficients between the Chinese land use classes and the IGBP land cover
classes.

Classes 1 2 3 4 5 6 7 8 9 10 11 12 13 15 16 17

Paddy lands 1.0
Drylands 1.0
Forest 0.6 0.6 0.6 0.6 0.6
Shrublands 0.63 0.42
Woods 0.53 0.53
Other forest 0.53 0.53 0.53 0.53 0.53
Dense grass 1.0
Moderate grass 1.0
Sparse grass 0.84 0.21
Streams and rivers 1.0
Lakes 1.0
Reservoirs and ponds 1.0
Permanent ice and snow 1.0
Beaches and shores 1.0
Bottomlands 1.0
Urban built-up lands 1.0
Rural settlements 1.0
Other built-up lands 1.0
Sandy lands 1.0
Gobi 1.0
Salina 1.0
Swamplands 1.0
Bare soil 1.0
Bare rock 1.0
Other 1.0 0.63

Note: All empty cells denote zeros.
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system. The forest and other forest classes are arbor forest classes; however, they do not 230

concretely specify forest-type information. This provides an accurate boundary for forest;
therefore, we assigned a correlation coefficient of 0.6 between forest in the China land-
source classification system and evergreen needleleaf forest (1), evergreen broadleaf forest
(2), deciduous needleleaf forest (3), deciduous broadleaf forest (4) and mixed forest (5),
and a correlation coefficient of 0.5 between other forest in the China land-source classifica- 235

tion system and evergreen needleleaf forest (1), evergreen broadleaf forest (2), deciduous
needleleaf forest (3), deciduous broadleaf forest (4), and mixed forest (5). Uncertainties do
exist in this process, but they are acceptable.

The glacier distribution map depicts IGBP class 15 (snow and ice). The swamp map
represents IGBP class 11 (permanent wetlands). The classes from the MODIS2001 use the 240

same IGBP classification system, so the C correlation coefficient is equal to 1. The final
level of belief in MODIS2001 is shown in Table 4.

3.3. Combining all the evidence

In general, the basic belief (or evidence) is represented by the mass function. The mass
function generates a basic level of belief for each evidence source for a hypothetical class, 245

and then the system of combination is used to combine these basic beliefs to generate a
total degree of belief for the hypothetical class. The D–S theory uses an orthogonal sum
(⊕) to compute a total belief degree using this equation: AQ6

m1 ⊕ m2 (Z) =
∑

X∩Y=Z
m1 (X ) m2 (Y )

1 − k
(3)

where Z is an IGBP class label and X and Y are input data labels. The sum extends over
all class labels whose intersection is X∩Y=Z. The set of intersections represents common 250

class labels of evidence. The values of m1⊕m2(Z) are used to determine the combined mass
and then assigned to a set of class labels, Z.

The parameter k is a normalization constant. It corrects for any mass that is committed
to the empty set (�), and it has the form:

k =
∑

X∩Y=φ

m1(X ) m2(Y ) (4)

where k indicates the extent of conflict between the two sources considered (Shafer 1976), 255

k = 0 indicates complete compatibility, and k=1 indicates complete contradiction. The
value of k between 0 and 1 indicates partial compatibility.

The above equations provide a method to combine two BPA functions, but they can
be used with any number of BPA functions by repeating the application of Equations (3)
and (4). The implementation of combined evidence is carried out in the belief module 260

Table 4. The basic probability values for the MODIS land cover product.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

0.5 0.5 0.5 0.5 0.5 0.45 0.45 0.5 0.45 0.45 0.1 0.54 0.1 0.4 0.6 0.6 0.6
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of the IDRISI software version 14.01, a GIS and remote-sensing image-processing tool
developed by Clark Labs, USA. The technical details can be found in Ronald (2003). AQ7

3.4. Making classification decisions

The D–S theory provides three functions to describe the degree of belief, degree of plausi-
bility, and belief interval for a hypothesis class. The belief function (Bel) is the total degree 265

of belief of a set and all its subsets. It is defined as

Bel (A) =
∑
B⊆A

m (B) (5)

where B represents any subset of a set A.
The plausibility function (Pl) is defined as the degree to which the evidence fails to

reject a hypothesis class, A. It is calculated as 1 minus the support for all other hypotheses
(Shafer 1976): 270

Pl (A) = 1 − Bel
(
A
)

(6)

The belief function defines the lower boundary of the support committed to an IGBP class,
while the plausibility function defines an upper boundary, and the range [Bel, Pl] is referred
to as a belief interval or an interval of uncertainty. In this study, the decision rule was based
on maximum support, where the class with the greatest support (i.e., the maximum total
belief) was assigned to the pixel. The interval of uncertainty for each pixel was also given. 275

3.5. Accuracy evaluation

In this study, the accuracy of the result map was validated using the following procedures.
First, it was validated through visual comparison at local scales; subsequently, detailed
and quantified validations for the forests in five provinces were performed using CFSDC-
FID data. In the third step, a complete validation over China was carried out based on the 280

ground-truth samples of land cover data obtained from the ChinaFlux sites, the Monsoon
Asia Integrated Regional Study (MAIRS) sites, and the high-resolution images from the
Google Earth.

In addition, confusion matrices were used to evaluate the accuracy of the forest class
with a reference to the CFSDC-FID data. A confusion matrix reports four accuracy mea- 285

sures: producer’s accuracy, user’s accuracy, overall accuracy, and the kappa coefficient
(Jensen 1996, Rahman and Saha 2008). The producer’s accuracy is a measure of the accu-
racy of a particular classification scheme. It shows what percentage of a particular ground
class was correctly classified. The user’s accuracy is a measure of the reliability of an out-
put map generated from a classification scheme. It is a statistic that can tell the user of the 290

map what percentage of a class corresponds to the ground-truth. The difference between
the producer’s accuracy and the user’s accuracy indicates the direction and degree of error
for all areas (Zhu et al. 2007). The overall accuracy is the percentage of correctly classi-
fied pixels. The kappa coefficient is a statistical measure of the agreement (beyond chance)
between two maps (e.g., the output classification map and the ground-truth map). 295
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4. Results and discussion

Using the method proposed in this article, a Multi-source Integrated Chinese Land
Cover (MICLCover) map was generated by a decision rule based on maximum support
(Figure 1). To analyze the characteristics of the result map, we compared the area of each
land cover class of MICLCover map with other two popular land cover maps, that is, the 300

IGBPDISCover and MODIS2001 map. The overall areas for each land cover class of the
MICLCover map, the MODIS2001, and the IGBPDISCover maps are shown in Table 5.
Note the marked increases in the areas of forests, grasslands, permanent wetlands, crop-
lands, urban and built-up lands, snow and ice, and bodies of water in the MICLCover map
and the corresponding decreases in shrublands, woody savannas, and cropland/natural veg- 305

etation mosaics. The degree of belief in these increases depends on the high degree of
support from the input data. In addition, significant differences are to be expected because
the MODIS2001 and IGBPDISCover maps were constructed from remote-sensing data
and are not good at recognizing dispersive and small targets. The decrease of woody
savanna and cropland/natural vegetation mosaics is due to the lower degree of support 310

by MODIS2001 map.

4.1. Visual comparison at three local plots

Three plots at a local scale were selected to evaluate the differences among the MICLCover,
IGBPDISCover, and MODIS2001 maps. The general pattern of the land cover distribution
in each plot appears similar, but the details are different (Figure 2). The MICLCover map 315

provides the highest level of details on the land cover patterns for the three plots. Region
A shows an area of the Heihe River Basin. Many field experiments have been performed
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Figure 1. The MICLCover map generated by combining multi-source data in China.
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Table 5. The overall area of each IGBP class in the MICLCover, MODIS2001, and IGBPDISCover
land cover maps, respectively.

Area (km2)

S.No. Class name MICLCover MODIS2001 IGBPDISCover

1 Evergreen needleleaf forest 543, 014 144, 935 131, 975
2 Evergreen broadleaf forest 249, 524 195, 959 69, 562
3 Deciduous needleleaf forest 11, 649 17, 892 24, 152
4 Deciduous broadleaf forest 317, 800 161, 746 282, 136
5 Mixed forest 231, 624 972, 482 594, 882
6 Closed shrublands 497, 813 84, 760 282, 505
7 Open shrublands 55, 112 1, 203, 542 1, 581, 434
8 Woody savannas 26, 227 476, 648 380, 349
9 Savannas 110 156, 601 39, 637
10 Grasslands 3, 024, 633 1, 713, 050 1, 825, 679
11 Permanent wetlands 102, 902 12, 323 5016
12 Croplands 1, 948, 136 1, 803, 962 1, 772, 116
13 Urban and built-up lands 153, 451 93, 444 7593
14 Cropland/natural vegetation mosaics 18, 904 189, 016 942, 048
15 Snow and ice 73, 856 18, 426 13, 027
16 Barren or sparsely vegetated lands 2, 054, 279 2, 135, 107 1, 400, 653
17 Bodies of water 211, 127 107, 649 129, 805

in this region by scientific researchers (e.g., the Heihe River Basin Field Experiment in
1990 and the Watershed Allied Telemetry Experimental Research in 2008) (Hu et al. 1994,
Wang 1999, Li et al. 2009). Field-based investigations show that the wider distribution 320

of grassland in the IGBPDISCover map, as compared to the other two maps, is incorrect.
The areas in the center of the plot are the Jinta and Zhangye oases where the cropland
and the urban and built-up lands are dominant. Region B shows an area in the Qiqihar
city of northeast China. According to the CFSDC-FID, there should be no forested lands
in this area and according to the field investigation Qiqihar wetland is located here. This 325

shows that the distribution pattern of land cover types in the MICLCover map is more
accurate. A similar situation occurs in Region C. The area in the center of Region C is the
boundary area of the Dabie Mountains, which are located in the Anhui, Henan, and Hubei
provinces. The Forest National Nature Reserve of Dabie Mountains is located in the Region
C. According to an investigation by the Forest National Nature Reserve, abundant forest 330

types (most of them are evergreen needleleaf forests) are distributed continuously in this
region. Figure 2 shows that the large area of evergreen needleleaf forest was misclassified
as woody savannas and cropland/natural vegetation mosaic in the IGBPDISCover map,
or as mixed forest in the MODIS2001, but that the MICLCover map represents the for-
est distribution very well. In addition, the classifications of urban and built-up lands were 335

improved for the three regions in the MICLCover map. The rural settlements (a very impor-
tant part of the urban and built-up lands) were successfully combined into the MICLCover
map from a land use database that was derived from a high-resolution remote sensing and
field survey. The MICLCover map shows that the rural settlements are widely distributed in
many agricultural areas in China. Most of the rural settlements cannot be discriminated in 340

the IGBPDISCover and MODIS2001 products because the data sources of these two land
cover products are Advanced Very High Resolution Radiometer (AVHRR) and MODIS, AQ8
both of which have coarse resolutions.
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Figure 2. Three local areas depicting the general differences among the three land cover maps. (a)
Region A is an area in Northwestern China centered at 99.1234◦E and 40.077◦N. (b) Region B is
an area in Northeastern China centered at 124.602◦E and 46.556◦N. (c) Region C is an area in the
junction between Anhui and Hubei provinces centered at 115.916◦E and 30.9643◦N.

4.2. Validation of the forest class using CFSDC-FID reference data

According to our evaluation of four remote-sensing-based global land cover products over 345

China (Ran et al. 2010), the forest classes have the largest uncertainty. In addition, it is
one of the most important classes for land surface modeling. Therefore, we compared the
resultant map with the CFSDC-FID data, which are currently available for four forest types
within five provinces.

4.2.1. The improvement of percent area for the forest classes 350

The MICLCover map was compared on a pixel-by-pixel basis with the CFSDC-FID data
for four forest types, including needleleaf forest, broadleaf forest, mixed forest, and shrub-
land, in four regions (five provinces) that are evenly distributed in China. Table 6 shows
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Table 6. Percent area of each forest class in the CFSDC-FID data, MODIS2001 land
cover product, and MICLCover land cover map for Gansu, Yunnan and Zhejiang provinces
and the Northeast region (Heilongjiang and Jilin provinces).

Region Class FID MODIS2001 MICLCover

Gansu Needleleaf forest 1.67 0.59 1.73
Broadleaf forest 3.24 0.58 2.52
Mixed forest 0.77 4.38 0.44
Shrublands 3.88 13.06 2.96

Yunnan Needleleaf forest 34.5 1.58 12.82
Broadleaf forest 18.58 22.97 11.42
Mixed forest 0.00 24.36 2.67
Shrublands 11.21 7.32 24.06

Zhejiang Needleleaf forest 43.21 5.52 40.95
Broadleaf forest 7.49 4.21 10.33
Mixed forest 0.00 48.82 5.41
Shrublands 9.04 2.04 7.04

Northeast Needleleaf forest 8.19 2.09 4.05
Broadleaf forest 27.13 8.57 20.75
Mixed forest 2.84 23.32 11.88
Shrublands 0.00 3.96 1.30

the percentage area of each forest class in the CFSDC-FID data, the MODIS2001, and
the MICLCover for Gansu, Yunnan, and Zhejiang provinces and for the Northeast region 355

(Heilongjiang and Jilin provinces). Figure 3 shows the snapshots of the four regions, indi-
cating the MICLCover map is more similar with CFSDC-FID map than with MODIS2001.

As shown in Table 6, the MICLCover maps are far closer to the CFSDC-FID data
in terms of the percentage area of each class. The MICLCover map has a much smaller 360

difference from the CFSDC-FID data than does the MODIS2001 map, with differences of
less than 1% for Gansu province, 22% for Yunnan province, 6% for Zhejiang province,
and 9% for all classes. The average absolute difference of percentage area between the
MICLCover and CFSDC-FID maps is 4.99% for all classes and regions; this is significantly
smaller than the difference between the MODIS2001 and the CFSDC-FID maps (14.25%). 365

4.2.2. The improvement of overall accuracy for forest class

Table 7 shows a comparison between the MODIS2001 and MICLCover maps in terms of
classification accuracy and kappa statistics using the CFSDC-FID data as a reference map.
Classification accuracies, including the producer’s and user’s accuracies and the overall
accuracy, and the kappa statistics were calculated for the MODIS2001 and our MICLCover 370

maps.
Table 7 shows that the overall accuracies of our MICLCover map are higher than those

of the MODIS2001 map for all four regions. Specifically, the overall accuracies of the
MODIS2001 map are between 27.77% and 77.89% for the four regions; these values
increased to between 42.19% and 88.65% for our MICLCover map. The biggest improve- 375

ment (from 27.77% to 57.76%) occurred in Zhejiang province. The overall kappa statistic
of the MICLCover map also increased for all four regions, with the biggest improvement
occurring in Zhejiang (from 0.12 to 0.36).
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Gansu

Yunnan

Zhejiang

(a) (b) (c)

Needleleaf  forest Broadleaf  forest Mixed forest Shrublands Others

Figure 3. Comparison of the CFSDC-FID data, the MODIS2001 product, and the MICLCover
map for Gansu, Yunnan, and Zhejiang provinces: (a) CFSDC-FID data, (b) MODIS2001, and (c)
MICLCover map.

At the class level, almost all forest classes were significantly improved. The shrub-
land class was improved in all four regions. The accuracy of shrubland class in the 380

Northeast region is null for both MODIS2001 and MICLCover maps. The area of shrub-
land class in reference data is only 8374 km2, and this class has a fragmented distribution
in the Northeast region. All these enhance the difficulty to identify this class. In terms of
producer’s accuracy, the maximum improvements occurred in Yunnan province. For the
shrubland class, the producer’s accuracy for the MODIS2001 map is only 8.01%, but for 385

the MICLCover map it increased to 31.46%. For the needleleaf forest class, the two cor-
responding values are 2.75% and 24.92%, respectively. Another significant improvement
occurred in Northeast China. For the broadleaf forest in the region, the producer’s accuracy
improved from 20.43% to 44.86%. In comparison to the MODIS2001 map, the producer’s
accuracies for the needleleaf forest class in the MICLCover map increased in Yunnan and 390

Zhejiang provinces and in the Northeast regions but decreased in Gansu province. Because
the smaller area of the needleleaf forest class in the MODIS2001 map leads to a relatively
higher producer’s accuracy, this resulted in a decrease in the accuracy of our MICLCover
map in Gansu province for needleleaf forest. For the broadleaf forest class, the producer’s
accuracies of MICLCover increased in Gansu and Zhejiang provinces and the Northeast 395

regions but decreased in Yunnan province.
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Table 7. The confusion matrices of the MICLCover and the MODIS2001 land cover for forest
classes using the CFSDC-FID reference data for Gansu, Yunnan and Zhejiang provinces and the
Northeast region (Heilongjiang and Jilin provinces).

Producer’s accuracy (%) User’s accuracy (%)

Province Class MODIS2001 MICLCover MODIS2001 MICLCover

Gansu Needleleaf forest 32.96 27.32 11.73 28.35
Broadleaf forest 31.35 35.84 5.64 27.86
Mixed forest 5.97 6.05 33.78 3.47
Shrublands 4.79 16.44 16.13 12.56
Others 94.17 93.95 84.73 95.93
Overall Accuracy (%) 77.89 88.65
Overall kappa 0.14 0.30

Yunnan Needleleaf forest 2.75 24.92 59.93 67.03
Broadleaf forest 46.81 30.81 37.64 50.05
Mixed forest 0.00 0.00 0.00 0.00
Shrublands 8.01 31.46 12.25 14.65
Others 55.69 68.16 45.56 49.68
Overall Accuracy (%) 30.40 42.19
Overall kappa 0.12 0.21

Zhejiang Needleleaf forest 56.84 64.17 7.28 60.82
Broadleaf forest 10.94 15.46 6.19 21.32
Mixed forest 0.00 0.00 0.00 0.00
Shrublands 4.83 17.26 1.09 13.44
Others 62.01 79.03 60.41 71.20
Overall Accuracy (%) 27.77 57.76
Overall kappa 0.12 0.36

Northeast Needleleaf forest 14.87 19.82 58.37 40.20
Broadleaf forest 20.43 44.86 64.76 58.75
Mixed forest 66.18 47.78 8.06 11.43
Shrublands 0.00 0.00 0.00 0.00
Others 82.24 84.14 81.89 83.80
Overall accuracy (%) 59.50 67.18
Overall kappa 0.31 0.41

The comparative results are different for user’s accuracies at the class level. The user’s
accuracies indicate that all classes improved in the MICLCover map for all four regions
except for the mixed forest in Gansu province and the broadleaf forest and needleleaf forest
classes in the Northeast regions. This probably can be attributed to the fact that the mixed 400

forest was over-classified in the MODIS2001 map (Figure 3). In all forest and shrubland
classes, the difference between the sum of the producer’s accuracy and the sum of the
user’s accuracy is −0.07% for the MICLCover map and −3% for the MODIS2001 map,
respectively; this indicates that the overall error of MICLCover map decreased more than
the error of the MODIS2001 map did. In addition, this negative difference value shows 405

the direction of error; that is, the areas of most forest and shrubland classes were slightly
underestimated in the MICLCover map (also consistent with Table 6).

4.3. Validation all over China using the ground-truth sample data

The validation of the large-scale map for all land cover types in all regions is difficult
because of the lack of reference data that can represent a ‘true’ land cover. Gong (2009) 410
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Figure 4. The distribution of ground sample sites for validation all over China.

performed the validation for a global land cover map using the ground-truth sample land
cover data from the global flux site. In this article, we applied a similar approach. We
used 79 ground-truth sample data points to validate the MICLCover map over China.
These data include 23 samples from the ChinaFlux sites (http://www.chinaflux.org), 18
samples from the MAIRS (http://www.mairs-essp.org) sites, and 38 samples from high- 415

resolution images accessed via Google Earth. The distribution of these samples is shown in
Figure 4. The results showed that the overall accuracy of the MICLCover map is 71%,
which is much higher than the accuracy of the MODIS2001 land cover map (48%).

Obviously, the MICLCover map synthesizes information about the basic appearance
of the vegetation (forest, shrubs, and herbaceous vegetation), the leaf attributes (evergreen 420

and deciduous), and the leaf types (broadleaved and coniferous) from the vegetation map.
It also extracts bodies of water, urban and built-up lands, and barren areas from the land use
map, glacier information from the glacier distribution map, and wetlands from the swamp
map. According to Ran et al. (2010) and the above analysis, the MICLCover map has a
higher accuracy than other land cover maps of China. 425

4.4. Uncertainty analysis

4.4.1. The spatial distribution of uncertainty

Figure 5 shows that the uncertainties of majority pixels range from 0.0 to 0.1; these pixels
are dominated by the barren-land class, which indicates that barren land can be more easily
identified than other classes using remote sensing. Only a few pixels have an uncertainty 430

of over 0.4, but the mountainous regions in China have greater levels of uncertainty than
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Figure 5. The spatial distribution of the interval of uncertainty for the MICLCover map.

other areas. One possible reason for this is that the land cover is more heterogeneous in
mountainous areas due to the complex micro-climates.

4.4.2. The distribution of uncertainty for different land cover types

Table 8 shows the maximum, minimum, mean, and standard deviations of the intervals of 435

uncertainty for each land cover type in the MICLCover map. The intervals of uncertainty
of the 17 land cover types can be divided into three levels. The land cover types with the
lowest level of the mean intervals of uncertainty include snow and ice, barren or sparsely
vegetated lands, permanent wetlands, bodies of water, croplands, grasslands, and urban and
built-up lands; the uncertainty of these levels is less than 0.05. This is because the areas of 440

grasslands, croplands, glaciers, snow, barren lands, bodies of water, and urban and built-
up lands were combined from the land use map, the swamp map, and the glacier map of
China, all of which have high accuracies. The medium level of uncertainty is for the land
cover types of evergreen needleleaf forest, evergreen broadleaf forest, deciduous needleleaf
forest, deciduous broadleaf forest, mixed forest, closed shrublands, and cropland/natural 445

vegetation mosaics. The mean intervals of uncertainty of these land cover types are rel-
atively low (around 0.17). This can be explained by the fact that the basic appearance of
the vegetation (forest, shrubs and herbaceous vegetation), the leaf attributes (evergreen and
deciduous), the leaf types (broadleaved and coniferous), and the cropland/natural vegeta-
tion mosaic information primarily comes from the vegetation map of China, which is less 450

accurate than the first group of sources. The MODIS2001 was assigned a lower weight and
did not significantly affect the uncertainty of these results. The highest level of uncertainty
is from the land cover types of savannas, open shrublands, and woody savannas and has a
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Table 8. The intervals of uncertainty according to type, with the min, max, range, mean
and standard deviation of the results.

Number Class name Min Max Range Mean SD

1 Evergreen needleleaf forest 0.022 0.550 0.529 0.096 0.083
2 Evergreen broadleaf forest 0.022 0.550 0.529 0.134 0.124
3 Deciduous needleleaf forest 0.099 0.500 0.401 0.150 0.062
4 Deciduous broadleaf forest 0.022 0.500 0.479 0.071 0.070
5 Mixed forest 0.022 0.500 0.479 0.176 0.130
6 Closed shrublands 0.024 0.550 0.526 0.155 0.130
7 Open shrublands 0.102 0.550 0.448 0.339 0.120
8 Woody savannas 0.025 0.550 0.525 0.251 0.030
9 Savannas 0.550 0.550 0.000 0.550 0.000
10 Grasslands 0.003 0.640 0.637 0.043 0.068
11 Permanent wetlands 0.000 0.900 0.900 0.035 0.038
12 Croplands 0.002 0.640 0.638 0.041 0.064
13 Urban and built-up lands 0.045 0.900 0.855 0.049 0.014
14 Cropland/natural vegetation mosaics 0.060 0.600 0.540 0.184 0.149
15 Snow and ice 0.001 0.400 0.399 0.025 0.030
16 Barren or sparsely vegetated lands 0.002 0.400 0.398 0.031 0.049
17 Bodies of water 0.002 0.400 0.398 0.039 0.048

higher mean uncertainty interval of 0.55. The reason for this higher level of uncertainty is
that there is no direct support for savannas from any of the input data sets. 455

4.4.3. Sources of uncertainty

By integrating the above analysis and classical evidence theory, we believe that the
uncertainties of the final map may have resulted from the following two sources:

• The uncertainty of input data. This is an important component of BPA. The errors
in land cover classifications are usually expressed using proportional error, which 460

is often difficult to determine (particularly with regard to its spatial distribution).
However, we do know that the error of the input data is spatially heterogeneous,
even within a specific class. We perform the error of input data at the class level
(and even at the data set levels) and using the information in literature reviews in
this study, probably, is the most important source of uncertainty in the MICLCover 465

map.
• The uncertainty of the evidence-generating process. The relationship between the

input data and the decision-making set (i.e., the IGBP land cover types) is another
important component of BPA. In general, it is important to obtain sufficiently accu-
rate correlation coefficients between each class of the input data and the IGBP 470

class by inquiring experts in this field. This is another source of uncertainty in the
MICLCover map.

5. Summary

An accurate land cover map can significantly reduce the uncertainty of land surface mod-
eling. In this article, a new 1 km land cover map of China, the MICLCover map, was 475

generated with a common classification system (i.e., the IGBP land cover classification
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system) by fusing highly accurate land cover information and MODIS2001 map for China.
The results of the validation analyses show a great improvement in accuracy in comparison
with other land cover maps. For all classes, the MICLCover map provides more spatial
details for the distributions of land cover types in the tested locations as compared to other 480

popular land cover products (such as the IGBPDISCover and MODIS2001 products); this
is especially true for the cropland, urban, glacier, wetland, and water body classes. For
the five provinces examined at local scales, the overall accuracies for forest classes were
increased from between 27.77% and 77.89% for the MODIS2001 map to between 42.19%
and 88.65% for the MICLCover map. The validation all over China shows that the overall 485

accuracy of the MICLCover map is 71%, which is higher than the accuracies of other land
cover maps. The MICLCover map thus has the potential to improve modeling accuracy
for land surface processes over China. Additionally, it may support other aspects of land
surface science.

From a methodological viewpoint, this study shows that it is effective to produce a 490

new land cover map using the D–S evidence decision rules to fuse multi-source data with
different merits as well as different accuracies. In this method, the BPA is the core of
the evidence-decision rule for the integration of multi-source class information. The basic
probability values of the input data were obtained by combining the literature reviews and
expert knowledge. However, there is a need for further research to improve this scheme. 495

A feasible approach is to increase the number of experts to consult in the BPA process.
The multiple basic probabilities can be combined using the method of analytical hierarchy
process (AHP) to obtain a final basic probability that will serve as input for the combined
system. This may reduce the uncertainty in the evidence-generating process. Indeed, the
method of error expression for discrete variables is a difficult issue that requires further 500

research. In addition, according to this research and Liu et al. (2003b), the integration
of new remotely sensed time-series images (such as Envisat MERIS (Medium Resolution AQ9
Imaging Spectrometer) and MODIS) with other GIS data is a new direction that likely has
the potential to improve the accuracy of future land cover mapping.
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