This dataset includes data recorded by the Heihe integrated observatory network obtained from an observation system of Meteorological elements gradient of Daman Superstation from January 1 to December 31, 2018. The site (100.372° E, 38.856° N) was located on a cropland (maize surface) in the Daman irrigation, which is near Zhangye city, Gansu Province. The elevation is 1556 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (AV-14TH;3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 2.5 m, 8 m in west of tower), four-component radiometer (PIR&PSP; 12 m, towards south), two infrared temperature sensors (IRTC3; 12 m, towards south, vertically downward), photosynthetically active radiation (LI190SB; 12 m, towards south, vertically upward; another four photosynthetically active radiation, PQS-1; two above the plants (12 m) and two below the plants (0.3 m), towards south, each with one vertically downward and one vertically upward), soil heat flux (HFP01SC; 3 duplicates with G1 below the vegetation; G2 and G3 between plants, -0.06 m), a TCAV averaging soil thermocouple probe (TCAV; -0.02, -0.04 m), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (CS616; -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), wind direction (WD_3 m, WD_5 m, WD_10 m, WD_15 m, WD_20 m, WD_30m, and WD_40 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2, and Gs_3, between plants) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content), above the plants photosynthetically active radiation of upward and downward (PAR_U_up and PAR_U_down) (μmol/ (s m-2)), and below the plants photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day.The meterological data during September 17 and November 7 and TCAV data after November 7 were wrong because the malfunction of datalogger. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
2020-07-25
This dataset contains the flux measurements from the Daman superstation eddy covariance system (EC) in the midstream reaches of the Heihe integrated observatory network from January 1 to December 31 in 2018. The site (100.37223° E, 38.85551° N) was located in the Zhangye City in Gansu Province. The elevation is 1556.06 m. The EC was installed at a height of 4.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software, including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC): class 1-3 (high quality), class 4-6 (good), class 7-8 (poor, better than gap filling data), class9 (rejected). In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 10% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m3), CO2 mass density (CO2, mg/m3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m2), latent heat flux (LE, W/m2), carbon dioxide flux (Fc, mg/ (m2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. Detailed information can be found in the suggested references. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.
2020-07-25
This dataset contains the flux measurements from the large aperture scintillometer (LAS) at Daman Superstation in the Heihe integrated observatory network from January 1 to December 31 in 2018. There were two types of LASs at Daman Superstation: BLS450 and BLS900, produced by Germany. The north tower was set up with the BLS450 receiver and the BLS900 transmitter, and the south tower was equipped with the BLS450 transmitter and the BLS900 receiver. The site (north: 100.379° E, 38.861° N; south: 100.369° E, 38.847° N) was located in Daman irrigation district, which is near Zhangye, Gansu Province. The underlying surfaces between the two towers were corn, orchard, and greenhouse. The elevation is 1556 m. The effective height of the LASs was 22.45 m, and the path length was 1854 m. The data were sampled 1 minute at both BLS450 and BLS900. The raw data acquired at 1 min intervals were processed and quality controlled. The data were subsequently averaged over 30 min periods, in which sensible heat flux was iteratively calculated by combining Cn2 with meteorological data according to the Monin-Obukhov similarity theory. The main quality control steps were as follows: (1) The data were rejected when Cn2 exceeded the saturated criterion (Cn2>1.43E-13). (2) The data were rejected when the demodulation signal was small (Average X Intensity<1000). (3) The data were rejected when collected during precipitation. (4) The data were rejected if collected at night when weak turbulence occurred (u* was less than 0.1 m/s). In the iteration process, the universal functions of Thiermann and Grassl, 1992 was selected. Detailed can refer to Liu et al. (2011, 2013). Several instructions were included with the released data. (1) The data were primarily obtained from BLS900 measurements, and missing flux measurements from the BLS900 instrument were substituted with measurements from the BLS450 instrument. The missing data were denoted by -6999. (2) The dataset contained the following variables: Date/time (yyyy/m/d h:mm), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). In this dataset, a time of 0:30 corresponds to the average data for the period between 0:00 and 0:30, and the data were stored in *.xlsx format. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) (for data processing) in the Citation section.
2020-07-25
This dataset includes data recorded by the Heihe integrated observatory network obtained from a Cosmic-ray Soil Moisture Observing System for soil moisture observation at the Daman Superstation from January 1 to December 31, 2018. The site (100.372° E, 38.856° N) was located on a cropland (maize surface) in the Daman irrigation area, which is near Zhangye city, Gansu Province. The elevation is 1556 m. The bottom of the probe was 0.5 m above the ground; the sampling interval was 1 hour. The raw COSMOS data include the following variables: battery (Batt, V), temperature (T, C), relative humidity (RH, %), air pressure (P, hPa), fast neutron counts (N1C, counts per hour), thermal neutron counts (N2C, counts per hour), sample time of fast neutrons (N1ET, s), and sample time of thermal neutrons (N2ET, s). The distributed data include the following variables: Date, Time, P, N1C, N1C_cor (corrected fast neutron counts) and VWC (volume soil moisture, %), which were processed as follows: 1) Data were removed and replaced by -6999 when (a) the battery voltage was less than 11.8 V, (b) the relative humidity was greater than 80% inside the probe box, (c) the counting data were not of one-hour duration and (d) neutron count differed from the previous value by more than 20%; 2) An air pressure correction was applied to the quality-controlled raw data according to the equation contained in the equipment manual; 3) After the quality control and corrections were applied, soil moisture was calculated using the equation in Zreda et al. (2012), where N0 is the neutron counts above dry soil and the other variables are fitted constants that define the shape of the calibration function. Here, the parameter N0 was calibrated using the in situ observed soil moisture by SoilNET within the footprint; 4) Based on the calibrated N0 and corrected N1C, the hourly soil moisture was computed using the equation from the equipment manual. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Zhu et al. (2015) for data processing) in the Citation section.
2020-07-25
This dataset contains the LAI measurements from the Daman superstation in the middle reaches of the Heihe integrated observatory network from June 11 to September 18 in 2018. The site (100.372° E, 38.856°N) was located in the maize surface, near Zhangye city in Gansu Province. The elevation is 1556 m. There are 3 observation samples, each of which is about 30m×30m in size, and the latitude and longitude ranges are (100.373297°E~100.374205°E, 38.857871°N~38.858390°N), (100.373918°E~100.373897°E, 38.854025°). N~38.854941°N), (100.368007°E~100.369044°E, 38.850678°N~38.851580°N). Five sub-canopy nodes and one above-canopy node are arranged in each sample. The LAI data is obtained from LAINet measurements following four steps: (1) the raw data is light quantum (level 0); (2) the daily LAI can be obtained using the software LAInet (level 1); (3) the invalid and null values are screened and using the 7 days moving averaged method to obtain the processed LAI (level 2); (4) for the multi LAINet nodes observation, the averaged LAI of the nodes area is the final LAI (level 3). The released data are the post processed LAI products and stored using *.xls format. For more information, please refer to Liu et al. (2018) (for sites information), Qu et al. (2014) for data processing) in the Citation section.
2020-07-25
The dataset contains phenological camera observation data collected at the Arou Superstation in the midstream of the Heihe integrated observatory network from June 13 to November 16, 2018. The instrument was developed with data processed by Beijing Normal University. The phenomenon camera integrates data acquisition and data transmission functions. The camera captures high-quality data with a resolution of 1280×720 by looking-downward. The calculation of the greenness index and phenology are following 3 steps: (1) calculate the relative greenness index (GCC, Green Chromatic Coordinate, calculated by GCC=G/(R+G+B)) according to the region of interest, (2) perform gap-filling for the invalid values, filtering and smoothing, and (3) determine the key phenological parameters according to the growth curve fitting (such as the growth season start date, Peak, growth season end, etc.) There are also 3 steps for coverage data processing: (1) select images with less intense illumination, (2) divide the image into vegetation and soil, and (3) calculate the proportion of vegetation pixels in each image in the calculation area. After the time series data is extracted, the original coverage data is smoothed and filtered according to the time window specified by the user, and the filtered result is the final time series coverage. This data set includes relative greenness index (GCC), phenological phase and fractional cover (FC). Please refer to Liu et al. (2018) for sites information in the Citation section.
2020-07-25
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn