This dataset is the FPAR observation in the artificial oasis experimental region of the middle stream of the Heihe River Basin. The observation period is from 24 May to 19 July, 2012 (UTC+8). Measurement instruments: AccuPAR (Beijing Normal University) Measurement positions: Core Experimental Area of Flux Observation Matrix 18 corn samples, 1 orchard sample, 1 artificial white poplar sample Measurement methods: For corn, to measure the incoming PAR on the canopy, transmission PAR under the canopy, reflected PAR on the canopy, reflected PAR under the canopy. For orchard and white poplar forest, to measure the incoming PAR outside of the canopy, transmission PAR under the canopy. Corresponding data: Land cover, plant height, crop rows identification
2021-07-26
On July 3, 2012, airborne ground synchronous observation was carried out in plmr sample belt near Linze station. Plmr (polarimetric L-band multibeam radiometer) is a dual polarized (H / V) L-band microwave radiometer, with a center frequency of 1.413 GHz, a bandwidth of 24 MHz, a resolution of 1 km (relative altitude of 3 km), six beam simultaneous observations, an incidence angle of ± 7 °, ± 21.5 °, ± 38.5 °, and a sensitivity of < 1K. The local synchronous data set can provide the basic ground data set for the development and verification of passive microwave remote sensing soil moisture inversion algorithm. Quadrat and sampling strategy: According to the typical ground surface type represented by three points near Linze station and taking part of neutron tube observation into account, the three routes from northwest to southeast are designed, with an interval of 200 m, a design altitude of about 300 m and a plmr ground resolution of 100 m. According to the observation characteristics of the route and plmr, three observation transects are designed on both sides of the route, each of which is about 6 km long. From west to East are L1, L2 and L3 respectively. Among them, L1 and L2 are centered on the middle route, 80 m apart; L2 and L3 are 200 m apart. Four hydroprobe data acquisition systems (HDAS, ref. 2) were used to measure at the same time. Measurement content: About 4500 points on the sample belt were obtained, each point was observed twice, that is to say, in each sampling point, once in the film (marked as a in the data record) and once out of the film (marked as B in the data record). As the HDAS system uses pogo portable soil sensor, the soil temperature, soil moisture (volume moisture content), loss tangent, soil conductivity, real part and virtual part of soil complex dielectric are observed. Vegetation parameter observation was carried out in some representative soil water sampling points, and the measurement of plant height and biomass (vegetation water content) was completed. Note: the observation date coincides with the irrigation of large area of farmland in this area, which makes it difficult for the observer to move forward, the field block is difficult to enter, and the observation point position deviates from the preset point position. Data: This data set includes two parts: soil moisture observation and vegetation observation. The former saves the data format as a vector file, the spatial location is the location of each sampling point (WGS84 + UTM 47N), and the measurement information of soil moisture is recorded in the attribute file; the vegetation sampling information is recorded in the excel table.
2020-03-14
This dataset is the LAI observation in the artificial oasis experimental region of the middle stream of the Heihe River Basin. The observation period is from 24 May to 20 September 2012 (UTC+8). Measurement instruments: LAI-2000 (Beijing Normal University) Measurement positions: Core Experimental Area of Flux Observation Matrix 18 corn samples, 1 orchard sample, 1 artificial white poplar sample Measurement methods: To measure the incoming sky radiation on the canopy firstly. Then the transmission sky radiation are mearued under the canopy for serveral times. The canopy LAI is retrieved by using the gap probability model.
2019-09-13
The aim of the simultaneous observation of river surface temperature is obtaining the river surface temperature of different places, while the sensor of thermal infrared go into the experimental areas of artificial oases eco-hydrology on the middle stream. All the river surface temperature data will be used for validation of the retrieved river surface temperature from thermal infrared sensor and the analysis of the scale effect of the river surface temperature, and finally serve for the validation of the plausibility checks of the surface temperature product from remote sensing. 1. Observation sites and other details Ten river sections were chosen to observe surface temperature simultaneously in the midstream of Heihe River Basin on 3 July and 4 July, 2012, including Sunan Bridge, Binhe new area, Heihe Bridge, Railway Bridge, Wujiang Bridge, Gaoya Hydrologic Station, Banqiao, Pingchuan Bridge, Yi’s Village, Liu’s Bridge. Self-recording point thermometers (observed once every 6 seconds) were used in Railway Bridge and Gaoya Hydrologic Station while handheld infrared thermometers (observed once of the river section temperature for every 15 minutes) were used in other eight places. 2. Instrument parameters and calibration The field of view of the self-recording point thermometer and the handheld infrared thermometer are 10 and 1 degree, respectively. The emissivity of the latter was assumed to be 0.95. All instruments were calibrated on 6 July, 2012 using black body during observation. 3. Data storage All the observation data were stored in excel.
2019-09-12
The dataset of airborne Polarimetric L-band Multibeam Radiometers (PLMR) was acquired on 3 July, 2012, located along the riverway of Heihe River in the middle reaches of the Heihe River Basin. The aircraft took off at 11:40 am (UTC+8) from Zhangye airport and landed at 14:10 pm, with the flight time of 2.5 hours. The flight was performed in the altitude of about 350 m and at the speed of about 220-250 km during the observation, corresponding to an expected ground resolution of about 100 m. The PLMR instrument flown on a small aircraft operates at 1.413 GHz (L-band), with both H- and V-polarizations at incidence angles of ±7.5°, ±21.5° and ±38.5°. PLMR ‘warm’ and ‘cold’ calibrations were performed before and after each flight. The processed PLMR data include 2 DAT files (v-pol and h-pol separately) and 1 KMZ file for each flying day. The DAT file contains all the TB values together with their corresponding beam ID, incidence angle, location, time stamp (in UTC) and other flight attitude information as per headings. The KMZ file shows the gridded 1-km TB values corrected to 38.5 degrees together with flight lines. Cautions should be taken when using these data, as the RFI contaminations are often higher than expected at v-polarization.
2019-05-23
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn