The dataset of airborne Polarimetric L-band Multibeam Radiometers (PLMR) was acquired on 4 July, 2012, located along the riverway of Heihe River in the middle reaches of the Heihe River Basin. The aircraft took off at 10:50 am (UTC+8) from Zhangye airport and landed at 14:50 pm, with the flight time of 4 hours. The flight was performed in the altitude of about 1000 m and at the speed of about 220-250 km during the observation, corresponding to an expected ground resolution of about 300 m. The PLMR instrument flown on a small aircraft operates at 1.413 GHz (L-band), with both H- and V-polarizations at incidence angles of ±7.5°, ±21.5° and ±38.5°. PLMR ‘warm’ and ‘cold’ calibrations were performed before and after each flight. The processed PLMR data include 2 DAT files (v-pol and h-pol separately) and 1 KMZ file for each flying day. The DAT file contains all the TB values together with their corresponding beam ID, incidence angle, location, time stamp (in UTC) and other flight attitude information as per headings. The KMZ file shows the gridded 1-km TB values corrected to 38.5 degrees together with flight lines. Cautions should be taken when using these data, as the RFI contaminations are often higher than expected at v-polarization.
2019-09-15
The dataset of airborne Polarimetric L-band Multibeam Radiometers (PLMR) was acquired on 26 July, 2012, located in the middle reaches of the Heihe River Basin. The aircraft took off at 9:10 am (UTC+8) from Zhangye airport and landed at 13:40 pm, with the flight time of 4.5 hours. The flight was performed in the altitude of about 2300 m and at the speed of about 220-250 km during the observation, corresponding to an expected ground resolution of about 700 m. The PLMR instrument flown on a small aircraft operates at 1.413 GHz (L-band), with both H- and V-polarizations at incidence angles of ±7.5°, ±21.5° and ±38.5°. PLMR ‘warm’ and ‘cold’ calibrations were performed before and after each flight. The processed PLMR data include 2 DAT files (v-pol and h-pol separately) and 1 KMZ file for each flying day. The DAT file contains all the TB values together with their corresponding beam ID, incidence angle, location, time stamp (in UTC) and other flight attitude information as per headings. The KMZ file shows the gridded 1-km TB values corrected to 38.5 degrees together with flight lines. Cautions should be taken when using these data, as the RFI contaminations are often higher than expected at v-polarization.
2019-09-14
The dataset of airborne Polarimetric L-band Multibeam Radiometers (PLMR) was acquired on 30 June, 2012, located in the middle reaches of the Heihe River Basin. The aircraft took off at 13:10 pm (UTC+8) from Zhangye airport and landed at 18:40 pm, with the flight time of 5.5 hours. The flight was performed in the altitude of about 2500 m and at the speed of about 220-250 km during the observation, corresponding to an expected ground resolution of about 750 m. The PLMR instrument flown on a small aircraft operates at 1.413 GHz (L-band), with both H- and V-polarizations at incidence angles of ±7.5°, ±21.5° and ±38.5°. PLMR ‘warm’ and ‘cold’ calibrations were performed before and after each flight. The processed PLMR data include 2 DAT files (v-pol and h-pol separately) and 1 KMZ file for each flying day. The DAT file contains all the TB values together with their corresponding beam ID, incidence angle, location, time stamp (in UTC) and other flight attitude information as per headings. The KMZ file shows the gridded 1-km TB values corrected to 38.5 degrees together with flight lines. Cautions should be taken when using these data, as the RFI contaminations are often higher than expected at v-polarization.
2019-09-13
The dataset of airborne microwave radiometers (K&Ka) mission was obtained in the Binggou watershed flight zone on Mar. 30, 2008. The frequency of K bands was 18.7 GHz at the nadir view angle without polarization; and the frequency of Ka band was 36.0 GHz with the scanning angle range ±12°. The plane took off at Zhangye airport at 12:43 (BJT) and landed at 15:44, along the scheduled 11 lines at the altitude about 5000m and speed about 220-250km/hr. The raw data include microwave radiometer (L&K) data and GPS data; K band was instantaneous non-imaging observation recorded in text, which will be converted into brightness temperatures according to the calibration coefficients (filed with raw data together) and Ka band was recorded hex text, and the latter are aircraft longitude, latitude and attitude. Moreover, based on the respective real-time clock log, observations by the microwave radiometer and GPS can be integrated to offer coordinates matching for the former. Yaw, flip, and pitch motions of aircraft were ignored due to the low resolution of microwave radiometer observations. Observation information can also be rasterized, as required, after calibration and coordinates matching. K band resolution (x) and footprint can be approximately estimated as x=0.3H (H is relative flight height); for Ka the resolution was 39m.
2019-09-12
The dataset of airborne Polarimetric L-band Multibeam Radiometers (PLMR) was acquired on 7 July, 2012, located in the middle reaches of the Heihe River Basin. The aircraft took off at 13:40 pm (UTC+8) from Zhangye airport and landed at 17:40 pm, with the flight time of 4 hours. The flight was performed in the altitude of about 2000 m and at the speed of about 220-250 km during the observation, corresponding to an expected ground resolution of about 600 m. The PLMR instrument flown on a small aircraft operates at 1.413 GHz (L-band), with both H- and V-polarizations at incidence angles of ±7.5°, ±21.5° and ±38.5°. PLMR ‘warm’ and ‘cold’ calibrations were performed before and after each flight. The processed PLMR data include 2 DAT files (v-pol and h-pol separately) and 1 KMZ file for each flying day. The DAT file contains all the TB values together with their corresponding beam ID, incidence angle, location, time stamp (in UTC) and other flight attitude information as per headings. The KMZ file shows the gridded 1-km TB values corrected to 38.5 degrees together with flight lines. Cautions should be taken when using these data, as the RFI contaminations are often higher than expected at v-polarization.
2019-09-12
The dataset of airborne Polarimetric L-band Multibeam Radiometers (PLMR) was acquired on 2 August, 2012, located in the middle reaches of the Heihe River Basin. The aircraft took off at 9:00 am (UTC+8) from Zhangye airport and landed at 14:00 pm, with the flight time of 5 hours. The flight was performed in the altitude of about 2300 m and at the speed of about 220-250 km during the observation, corresponding to an expected ground resolution of about 700 m. The PLMR instrument flown on a small aircraft operates at 1.413 GHz (L-band), with both H- and V-polarizations at incidence angles of ±7.5°, ±21.5° and ±38.5°. PLMR ‘warm’ and ‘cold’ calibrations were performed before and after each flight. The processed PLMR data include 2 DAT files (v-pol and h-pol separately) and 1 KMZ file for each flying day. The DAT file contains all the TB values together with their corresponding beam ID, incidence angle, location, time stamp (in UTC) and other flight attitude information as per headings. The KMZ file shows the gridded 1-km TB values corrected to 38.5 degrees together with flight lines. Cautions should be taken when using these data, as the RFI contaminations are often higher than expected at v-polarization.
2019-09-12
The dataset of ground truth measurements for snow synchronizing with the airborne microwave radiometers (K&Ka bands) mission was obtained in the Binggou watershed foci experimental area on Mar. 30, 2008. Those provide reliable data for retrieval of snow parameters and properties, especially for dry and wet snow identification. Observation items included: (1) Snow density, snow complex permittivity, snow volumetric moisture and snow gravimetric moisture by the snowfork in BG-A; (2) Snow parameters including snow depth, the snow surface temperature synchronizing with the airborne microwave radiometers (K&Ka bands), the snow layer temperature, the snow grain size and snow density in BG-A (10 points), BG-B (6 points), BG-F (12 points), BG-H (21 points) and BG-I (20 points); For each snow pit, the snowpack was divided into several layers with 10-cm intervals of snow depth. The layer depth (by the ruler), the snow grain size (by the handheld microscope), snow density (by the cutting ring) and the snow temperature (by the probe thermometer) were obtained at each snow pit. Two files including raw data and the preprocessed data were archived.
2019-09-10
This dataset was acquired on May 25, 2008 by the L&K-band airborne microwave radiometer at the Linze-Biandukou flight area.The L-band frequency is 1.4 GHz, the rear view is 35 degrees, and the dual-polarization (H and V) information is obtained; the K-band frequency is 18.7 GHz, with zenith angle observation, and there is no polarization information. The plane took off from Zhangye Airport at 9:51 (Beijing time, the same below) and landed at 15:01. The observation from 10:10 to 12:30 was in the Linze area, the flight altitude is about 1800m, and the flight speed is about 250km/hr. The plane flew low over Linze Reservoir from 12:31 to 12:38. The plane works in the Bianduko aerophotography region from13:13 to 14:35, the flight altitude is about 3000m, and the flight speed is about 250km/hr. The original data is divided into two parts: microwave radiometer data and GPS data. The L and K bands of microwave radiometer are all from non-imaging observation, the digital values obtained from instantaneous observation are recorded by text files, the longitude and latitude of flight and the attitude parameters of aircraft are recorded by GPS data. At the same time, through the respective clock records of the microwave radiometer and GPS, the microwave observation can be linked with the GPS record, and the microwave observation can be matched with the geographical coordinate information. Due to the relatively low resolution of the microwave radiometer, the leeway, welter and pitching of the aircraft are generally neglected in data processing. According to the target of use and relative flight altitude (H), after calibration and coordinate matching, the observation information can be rasterized. The resolution (x) of the L and K bands can be considered consistent with the observation footprint. The reference resolution is: L band, x = 0.3H; K band, x = 0.24H. After the above steps, products that can be directly used by users can be obtained.
2019-07-20
The dataset of airborne Polarimetric L-band Multibeam Radiometers (PLMR) was acquired on 10 July, 2012, located in the middle reaches of the Heihe River Basin. The aircraft took off at 10:30 am (UTC+8) from Zhangye airport and landed at 15:30 pm, with the flight time of 5 hours. The flight was performed in the altitude of about 2500 m and at the speed of about 220-250 km during the observation, corresponding to an expected ground resolution of about 750 m. The PLMR instrument flown on a small aircraft operates at 1.413 GHz (L-band), with both H- and V-polarizations at incidence angles of ±7.5°, ±21.5° and ±38.5°. PLMR ‘warm’ and ‘cold’ calibrations were performed before and after each flight. The processed PLMR data include 2 DAT files (v-pol and h-pol separately) and 1 KMZ file for each flying day. The DAT file contains all the TB values together with their corresponding beam ID, incidence angle, location, time stamp (in UTC) and other flight attitude information as per headings. The KMZ file shows the gridded 1-km TB values corrected to 38.5 degrees together with flight lines. Cautions should be taken when using these data, as the RFI contaminations are often higher than expected at v-polarization.
2019-05-23
The dataset of airborne microwave radiometers (L&K) mission was obtained in the A'rou-Biandukou flight zone on Mar. 19, 2008. The frequency of L bands was 1.4 GHz with back sight of 35 degree and dual polarization (H&V) was acquired; and the frequency of K band was 18.7 GHz at the nadir view angle without polarization. The plane took off at Zhangye airport at 9:25 (BJT) and landed at 12:50 along the scheduled lines at the altitude about 4100m and speed about 260km/hr. The raw data include microwave radiometer (L&K bands) data and GPS data; the former are instantaneous non-imaging observation recorded in text, which will be converted into brightness temperatures according to the calibration coefficients (filed with raw data together), and the latter are aircraft longitude, latitude and attitude. Moreover, based on the respective real-time clock log, observations by the microwave radiometer and GPS can be integrated to offer coordinates matching for the former. Yaw, flip, and pitch motions of aircraft were ignored due to the low resolution of microwave radiometer observations. Observation information can also be rasterized, as required, after calibration and coordinates matching. L&K bands resolution (x) and footprint can be approximately estimated as x=0.3H (H is relative flight height) for L band and x=0.24H for K band.
2019-05-23
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn