Current Browsing: Hydrology


Great Lakes region of Central Asia basic data set hydrology (2015)

Runoff is formed by atmospheric precipitation and flows into rivers, lakes or oceans through different paths in the basin. It is also used to refer to the amount of water passing through a certain section of the river in a certain period of time, i.e. runoff. Runoff data plays an important role in the study of hydrology and water resources, which affects the social and economic development of Adam land. This data is the flow of five Central Asian countries (Kazakhstan, Kyrgyzstan, Tajikistan, Uzbekistan and Turkmenistan), which comes from the hydrometeorological bureaus of Central Asian countries. The time scale is the average annual data of 2015. This data provides basic data for the project, which is convenient to analyze the situation of eco hydrological water resources in Central Asia, and provides data support for project data analysis.

2022-04-18

Data set of simulation results of key hydrological variables in Zhangye basin of Heihe River Basin (1990-2012)

This project is based on the gsflow model of USGS to simulate the surface groundwater coupling in Zhangye basin in the middle reaches of Heihe River. The space-time range and accuracy of the simulation are as follows: Simulation period: 1990-2012; Simulation step: day by day; The spatial scope of simulation: Zhangye basin; The spatial accuracy of simulation: the underground part is 1km × 1km grid (5 layers, the total number of grids in each layer is 150 × 172 = 25800, among which the active grid 9106); the surface part is based on the hydrological response unit (HRU) (588 in total, each HRU covers an area of several square kilometers to dozens of square kilometers). The data include: surface infiltration, actual evapotranspiration, average soil moisture content, surface groundwater exchange, shallow groundwater level, simulated daily flow of Zhengyi gorge, simulated monthly flow of Zhengyi gorge, groundwater extraction and river diversion

2021-01-12

Monthly evapotranspiration dataset with 1 km spatial resolution over the Heihe River Basin Version 2.0 (2000-2013)

ET (ET) monitoring is crucial to agricultural water resource management, regional water resource utilization planning and socio-economic sustainable development.The limitations of traditional ET monitoring methods mainly lie in that they cannot observe a large area at the same time and can only be limited to observation points. Therefore, the cost of personnel and equipment is relatively high, and they can neither provide surface ET data, nor provide ET data of different land use types and crop types. Quantitative monitoring of ET can be achieved by using remote sensing. The characteristics of remote sensing information are that it can not only reflect the macroscopic structure characteristics of the earth surface, but also reflect the microscopic local differences. Version 2.0 (second edition) of the surface evapotranspiration data set of the heihe river basin from 2000 to 2013 is based on multi-source remote sensing data and the latest ETWatch model is adopted to estimate the raster image data. Its temporal resolution is monthly scale and the spatial resolution is 1km scale. The data covers the whole basin in millimeters.Data types include monthly, quarterly, and annual data. The projection information of the data is as follows: Albers equal-area cone projection, Central longitude: 110 degrees, First secant: 25 degrees, Second secant: 47 degrees, Coordinates by west: 4000000 meter. File naming rules are as follows: Monthly cumulative ET value file name: heihe-1km_2013m01_eta.tif Heihe represents the heihe river basin, 1km represents the resolution of 1km, 2013 represents the year of 2013, m01 represents the month of January, eta represents the actual evapotranspiration data, and tif represents the data in tif format. Name of quarterly cumulative ET value file: heihe-1km_2013s01_eta.tif Heihe refers to heihe river basin, 1km refers to the resolution of 1km, 2013 refers to 2013, s01 refers to january-march, is the first quarter, eta refers to the actual evapotranspiration data, and tif refers to the data in tif format. Annual cumulative value file name: heihe-1km_2013y_eta.tif Among them, heihe represents heihe river basin, 1km represents the resolution of 1km, 2013 represents the year of 2013, y represents the year, eta represents the actual evapotranspiration data, and tif represents the data in tif format.

2020-08-26

Water Plan of California (2005)

"Hydrologic - ecological - economic process coupling and evolution of heihe river basin governance under the framework of Water rights" (91125018) project data exchange to 5-water-plan-california 1. Data overview: California's water resources plan for 2005 for catchment comparison 2. Data content: the public plan

2020-07-31

Dataset of shrub interception and transpiration in Tianlaochi watershed of Qilian Mountain (2012)

This data includes three parts of data, namely shrub water holding experiment, shrub interception experiment and shrub transpiration experiment data. Shrub water holding experiment: select the two shrub types of Caragana jubata and Potentilla fruticosa, respectively pick the branches and leaves of the two vegetation types, weigh their fresh weight, carry out water holding experiment, measure the saturated weight of branches and leaves, dry weight of branches and leaves, dry weight of branches and leaves after completion, and finally obtain the data of branches, leaves and total water holding capacity. Shrub interception experiment: two shrubs, Caragana jubata and Potentilla fruticosa, were also selected and investigated. 30 rain-bearing cups were respectively arranged under the two shrubs. after each rainfall, penetration rainfall was measured and observed from June 1, 2012 to September 10, 2012. Shrub Transpiration Experiment: Potentilla fruticosa on July 14, Caragana jubata on August 5, Salix gilashanica on August 15, 2012. The measurement is made every hour according to the daily weather conditions.

2020-07-30

Simulation results of eco hydrological model in the middle and lower reaches of Heihe river v1.0 (2001-2012)

This project use distributed HEIFLOW Ecological hydrology model (Hydrological - Ecological Integrated watershed - scale FLOW model) of heihe river middle and lower reaches of the eco Hydrological process simulation.The model USES the dynamic land use function, and adopts the land use data of the three phases of 2000, 2007 and 2011 provided by hu xiaoli et al. The space-time range and accuracy of simulation are as follows: Simulation period: 2000-2012, of which 2000 is the model warm-up period Analog step size: day by day Simulation space range: the middle and lower reaches of heihe river, model area 90589 square kilometers Spatial accuracy of the simulation: 1km×1km grid was used on both the surface and underground, and there were 90589 hydrological response units on the surface.Underground is divided into 5 layers, each layer 90589 mobile grid The data set of HEIFLOW model simulation results includes the following variables: (1) precipitation (unit: mm/month) (2) observed values of main outbound runoff in the upper reaches of heihe river (unit: m3 / s) (3) evapotranspiration (unit: mm/month) (4) soil infiltration amount (unit: mm/month) (5) surface yield flow (unit: mm/month) (6) shallow groundwater head (unit: m) (7) groundwater evaporation (unit: m3 / month) (8) supply of shallow groundwater (unit: m3 / month) (9) groundwater exposure (unit: m3 / month) (10) river-groundwater exchange (unit: m3 / month) (11) simulated river flow value of four hydrological stations of heihe main stream (gaoya, zhengyi gorge, senmaying, langxin mountain) (unit: cubic meter/second) The first two variables above are model-driven data, and the rest are model simulation quantities.The time range of all variables is 2001-2012, and the time scale is month.The spatial distributed data precision is 1km×1km, and the data format is tif. In the above variables, if the negative value is encountered, it represents the groundwater excretion (such as groundwater evaporation, groundwater exposure, groundwater recharge channel, etc.).If groundwater depth is required, the groundwater head data can be subtracted from the surface elevation data of the model. In some areas, the groundwater head may be higher than the surface, indicating the presence of groundwater exposure. In addition, the dataset provides: Middle and downstream model modeling scope (format:.shp) Surface elevation of the middle and downstream model (in the format of. Tif) All the above data are in the frame of WGS_1984_UTM_Zone_47N. Take heiflow_v1_et_2001m01.tif as an example to illustrate the naming rules of data files: HEIFLOW: model name V1: data set version 1.0 ET: variable name 2001M01: January 2000, where M represents month

2020-07-28

Hydrological data of Heihe River: report set of planning and water distribution of Heihe River Basin

Data investigation method: investigation and collection of Heihe River Basin Authority. The data include: the water distribution plan of the main stream of Heihe River (including Liyuan River) prepared by the Yellow River Water Conservancy Commission of the Ministry of water resources in 1996; the brief report on the water conservancy planning of the main stream of Heihe River prepared by Lanzhou survey and Design Institute of the Ministry of water resources in 1992; the short term management plan of Heihe River Basin approved by the State Council in 2001; the compilation of historical documents of water regulation of Heihe River by the administration of Heihe River Basin in 2008 》In 2014, the research on the reasonable allocation scheme of water resources in Jiuquan Basin of the Taolai River Basin was compiled by the Taolai River Basin Authority.

2020-07-28

Deuterium oxygen isotope values of precipitation, river water and groundwater (including spring water) in Hulugou small watershed (July September 2015)

一. data description The data included the precipitation, river water and groundwater in the small calabash valley from July to September 2015 2H, 18O, with a sampling frequency of 2 weeks/time. 二. Sampling location (1) the precipitation sampling point is located in the ecological hydrology station of the institute of cold and dry regions, Chinese academy of sciences, with the latitude and longitude of 99 ° 53 '06.66 "E, 38 ° 16' 18.35" N. (2) the sampling point of the river is located at the outlet flow weir of haugugou small watershed in the upper reaches of the heihe river, with the latitude and longitude of 99 ° 52 '47.7 "E and 38 ° 16' 11" N.The water sampling point number 2 position for heihe river upstream hoist ditch Ⅱ area exports, latitude and longitude 99 ° 52 '58.40 "E, 38 ° 14' 36.85" N. (3) underground water spring and well water sampling points.The sampling point of spring water is located at 20m to the east of the outlet of the basin, with the latitude and longitude of 99°52 '50.9 "E, 38°16' 11.44" N. The well water sampling point is located near the intersection of east and west branches, with the latitude and longitude of 99 ° 52 '45.38 "E, 38 ° 15' 21.27" N. 三. Test method The δ2H and δ18O values of the samples were measured by PICARRO L2130-i ultra-high precision liquid water and water vapor isotope analyzer. The results were expressed by the test accuracy value of v-smow relative to the international standard substance, and the measurement accuracy was 0.038‰ and 0.011‰, respectively.

2020-06-07

Hydrological datasets of the Heihe river basin (1990-1995)

Based on the "western data center", the daily discharge from three field observation stations (zamashk, Yingluoxia, Qilian) since 1990-1995 is sorted out.

2020-06-05

Canopy interception dataset of Picea crassifolia in Tianlaochi watershed of Qilian Mountain

The data are from 2011 to 2012. A 30m×30m Picea crassifolia canopy interception sample plot was set up in the Picea crassifolia sample plot at an altitude of 2800m m. A siphon raingauge model DSJ2 (Tianjin Meteorological Instrument Factory) was set up on the open land of the river about 50m from the sample plot to observe the rainfall outside the forest and its characteristics. Penetrating rain in the forest adopts a combination of manual observation and automatic observation. Automatic observation is mainly realized through a penetrating rain collection system arranged in the interception sample plot, which consists of a water collecting tank and an automatic recorder. Two 400cm×20cm water collecting tanks are connected with DSJ2 siphon rain gauge, and the change characteristics of penetrating rain under the forest are continuously recorded by an automatic recorder. Due to the spatial variability of the canopy structure of Picea crassifolia forest in the sample plot, a standard rainfall tube for manual observation is also arranged in the sample plot to observe the penetrating rain in the forest. Ninety rainfall tubes with a diameter of 20cm are arranged in the sample plot at intervals of 3m. After each precipitation event ends and the penetrating rain in the forest stops, the amount of water in the rain barrel will be emptied and the penetrating rain in the barrel will be measured with the rain cup.

2020-03-14