Current Browsing: Human-nature Relationship


Microbial data set of Qinghai Tibet Plateau Lakes (2015)

This data includes bacterial 16S ribosomal RNA gene sequence data from 25 lakes in the middle of the Qinghai Tibet Plateau. The sample was collected from July to August 2015, and the surface water was sampled three times with a 2.5 liter sampler. The samples were immediately taken back to the Ecological Laboratory of the Beijing Qinghai Tibet Plateau Research Institute, and the salinity gradient of the salt lake was 0.14~118.07 g/L. This data is the result of amplification sequencing. Concentrate the lake water to 0.22 at 0.6 atm filtration pressure μ The 16S rRNA gene fragment amplification primers were 515F (5 '- GTGCCAAGCCGCGGTAA-3') and 909r (5 '- GGACTACHVGGGTWTCTAAT-3'). The Illumina MiSeq PE250 sequencer was used for end-to-end sequencing. The original data was analyzed by Mothur software. The sequence was compared with the Silva128 database and divided into operation classification units (OTUs) with 97% homology. This data can be used to analyze the microbial diversity of lakes in the Qinghai Tibet Plateau.

2022-10-14

Data set of soil microbial diversity in Namco, Qinghai Tibet Plateau (2015)

This data includes the distribution data of soil bacteria in Namco region of the Qinghai Tibet Plateau, which can be used to explore the seasonal impact of fencing and grazing on soil microorganisms in Namco region. The sample was collected from May to September 2015, and the soil samples were stored in ice bags and transported back to the Ecological Laboratory of Beijing Institute of Qinghai Tibet Plateau Research; This data is the result of amplification sequencing, using MoBio Powersoil ™ Soil DNA was extracted with DNA isolation kit, and the primers were 515F (5 '- GTGCCAAGCGCCGGTAA-3') and 806R (5'GGACTACNVGGGTWTCTAAT-3 '). The amplified fragments were sequenced by Illumina Miseq PE250. The original data is analyzed by Qiime software, and then the similarity between sequences is calculated, and the sequences with a similarity of more than 97% are clustered into an OTU. The Greengenes reference library is used for sequence alignment to remove the sequence that only appears once in the database. The soil moisture content and soil temperature were measured by a soil hygrometer, and the soil pH was measured by a pH meter (Sartorius PB-10, Germany). The soil nitrate nitrogen (NO3 −) and ammonium nitrogen (NH4+) concentrations were extracted with 2 M KCl (soil/solution, 1:5), and analyzed with a Smartchem200 discrete automatic analyzer. This data set is of great significance to the study of soil microbial diversity in arid and semi-arid grasslands.

2022-10-14

Data set of soil microbe in grassland of Qinghai Tibet Plateau (2017)

Data on soil bacterial diversity of grassland in Qinghai Tibet Plateau. The samples were collected from July to August 2017, including 120 samples of alpine meadow, typical grassland and desert grassland. The soil surface samples were collected and stored in ice bags, and then transported back to the ecological laboratory of the Beijing Qinghai Tibet Plateau Research Institute. The soil DNA was extracted by MO BIO PowerSoil DNA kit. The 16S rRNA gene fragment amplification primers were 515F (5 '- GTGCCAAGCCGGTAA-3') and 806R (5 ´ GGACTACNVGGGTWTCTAAT-3 ´). The amplified fragments were sequenced by Illumina Miseq PE250. The original data is analyzed by Qiime software, and the sequence classification is based on the Silva128 database. Sequences with a similarity of more than 97% are clustered into an operation classification unit (OTU). This data systematically compares the bacterial diversity of soil microorganisms in the Qinghai Tibet Plateau transect, which is of great significance to the study of the distribution of microorganisms in the Qinghai Tibet Plateau.

2022-10-14

Temperature and precipitation data at meteorological stations in five Central Asian countries (1980-2015)

The data set covers 599 meteorological stations in five Central Asian countries, including the following elements: * daily maximum temperature, * daily minimum temperature, * observed temperature, * Precipitation (i.e. rain, melting snow), covering the following dates: 1980-1986; 1996-2005; 2010; 2014; 2015 The data comes from ghcn-d, a data set containing global land area daily observation data, which integrates climate records. The data is a direct measurement of surface temperature, without interpolation or model assumptions, and contains many long-term site records. The disadvantage is uneven space coverage. Due to changes in observation time, site location, and the type of thermometer used, the records contain many heterogeneity. For more information about this dataset, see https://www.ncdc.noaa.gov/ghcnd-data-access

2022-04-26

Net primary productivity data set of the Tibetan Plateau (1980-2018)

The data set is based on the NPP simulated by 16 dynamic global vegetation models (TRENDY v8) under S2 Scenario (CO2+Climate) and represents the net primary productivity of the ecosystem. Data was derived from Le Quéré et al. (2019). The range of source data is global, and the Qinghai Tibet plateau region is selected in this data set. Original data is interpolated into 0.5*0.5 degree by the nearest neighbor method in space, and the original monthly scale is maintained in time. The data set is the standard model output data, which is often used to evaluate the temporal and spatial patterns of gross primary productivity, and compared with other remote sensing observations, flux observations and other data.

2022-04-19

Integrated multi-hazard population risk in the peri-Himalayan and Asian water tower regions (2021)

This data uses a landslide hazard risk assessment model consisting of four modules: landslide hazard causative factors, landslide susceptibility model, exposed population and population casualty rate. The module of hazard-causing factors includes DEM, slope, rainfall, temperature, snow cover, GDP, and vegetation cover factors. The landslide hazard susceptibility model is a statistical analysis using a logistic regression model to obtain landslide susceptibility probability values. The population exposure module uses the landslide susceptibility values overlaid with population data. The population casualty rate module is based on the ratio of historical landslide casualties to the population exposed to landslides during the same period. Finally, by substituting the 2020 population data, the exposed population under different levels of landslide hazard susceptibility is calculated and multiplied with the historical period landslide hazard population casualty rate to assessIntegrated multi-hazard population risk in the peri-Himalayan and Asian water tower regions

2022-04-19

A daily, 0.05° Snow depth dataset for Tibetan Plateau (2000-2018)

Under the funding of the first project (Development of Multi-scale Observation and Data Products of Key Cryosphere Parameters) of the National Key Research and Development Program of China-"The Observation and Inversion of Key Parameters of Cryosphere and Polar Environmental Changes", the research group of Zhang, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, developed the snow depth downscaling product in the Qinghai-Tibet Plateau. The snow depth downscaling data set for the Tibetan Plateau is derived from the fusion of snow cover probability dataset and Long-term snow depth dataset in China. The sub-pixel spatio-temporal downscaling algorithm is developed to downscale the original 0.25° snow depth dataset, and the 0.05° daily snow depth product is obtained. By comparing the accuracy evaluation of the snow depth product before and after downscaling, it is found that the root mean square error of the snow depth downscaling product is 0.61 cm less than the original product. The details of the product information of the Downscaling of Snow Depth Dataset for the Tibetan Plateau (2000-2018) are as follows. The projection is longitude and latitude, the spatial resolution is 0.05° (about 5km), and the time is from September 1, 2000 to September 1, 2018. It is a TIF format file. The naming rule is SD_yyyyddd.tif, where yyyy represents year and DDD represents Julian day (001-365). Snow depth (SD), unit: centimeter (cm). The spatial resolution is 0.05°. The time resolution is day by day.

2022-04-18

Land cover data for Southeast Asia (2015)

This data is the land cover data at 30m resolution of Southeast Asia in 2015. The data format of the data is NetCDF, and the variable name is "land cover type". The data was obtained by mosaicing and extracting the From-GLC data. Several land cover types, such as snow and ice that do not exist in Southeast Asia were eliminated.The legend were reintegrated to match the new data. The data provide information of 8 land cover types: cropland, forest, grassland, shrub, wetland, water, city and bare land. The overall accuracy of the data is 71% (Gong et al., 2019). The data can provide the land cover information of Southeast Asia for hydrological models and regional climate models.

2022-04-18

Basic geographic data of Qinghai Tibet Plateau (2015)

The data set is the basic data of the Qinghai Tibet Plateau in 2015. The original data comes from the National Basic Geographic Information Center, and the data of the Qinghai Tibet plateau region is formed by splicing and clipping the segmented data. The data content includes 1:1 million provincial administrative divisions, 1:1 million roads and 1:250000 water system. The data attributes of administrative divisions include name, code and Pinyin; Road data attributes include: GB, RN, name, rteg and type (basic geographic information classification code, road code, road name, road grade and road type); Water system data attributes include: GB, hydc, name, period (basic geographic information classification code, water system name code, name, season).

2022-04-18

Socio-demographic data of five Central Asian Countries (1991-2017)

The data set records the total socio-demographic data of five central Asian countries from 1991 to 2017.Population indicators including annual population, estimated life expectancy, total fertility rate (1000 people), and total mortality (1000 people), infant mortality, maternal mortality, the total marriage rates, the overall divorce rate, migration of all flow balance, the number of medical institutions, hospital beds (m), the number of preschool institutions (a), kindergarten school student number (m) number, number of middle school, high school students (m), the number of the university, the number of students, institutions of higher learning, the number of students of institutions of higher learning.The data are from the statistical yearbooks of five central Asian countries.

2022-04-18