Current Browsing: The middle and lower of Heihe

Simulation results of eco hydrological model in the middle and lower reaches of Heihe river v1.0 (2001-2012)

This project use distributed HEIFLOW Ecological hydrology model (Hydrological - Ecological Integrated watershed - scale FLOW model) of heihe river middle and lower reaches of the eco Hydrological process simulation.The model USES the dynamic land use function, and adopts the land use data of the three phases of 2000, 2007 and 2011 provided by hu xiaoli et al. The space-time range and accuracy of simulation are as follows: Simulation period: 2000-2012, of which 2000 is the model warm-up period Analog step size: day by day Simulation space range: the middle and lower reaches of heihe river, model area 90589 square kilometers Spatial accuracy of the simulation: 1km×1km grid was used on both the surface and underground, and there were 90589 hydrological response units on the surface.Underground is divided into 5 layers, each layer 90589 mobile grid The data set of HEIFLOW model simulation results includes the following variables: (1) precipitation (unit: mm/month) (2) observed values of main outbound runoff in the upper reaches of heihe river (unit: m3 / s) (3) evapotranspiration (unit: mm/month) (4) soil infiltration amount (unit: mm/month) (5) surface yield flow (unit: mm/month) (6) shallow groundwater head (unit: m) (7) groundwater evaporation (unit: m3 / month) (8) supply of shallow groundwater (unit: m3 / month) (9) groundwater exposure (unit: m3 / month) (10) river-groundwater exchange (unit: m3 / month) (11) simulated river flow value of four hydrological stations of heihe main stream (gaoya, zhengyi gorge, senmaying, langxin mountain) (unit: cubic meter/second) The first two variables above are model-driven data, and the rest are model simulation quantities.The time range of all variables is 2001-2012, and the time scale is month.The spatial distributed data precision is 1km×1km, and the data format is tif. In the above variables, if the negative value is encountered, it represents the groundwater excretion (such as groundwater evaporation, groundwater exposure, groundwater recharge channel, etc.).If groundwater depth is required, the groundwater head data can be subtracted from the surface elevation data of the model. In some areas, the groundwater head may be higher than the surface, indicating the presence of groundwater exposure. In addition, the dataset provides: Middle and downstream model modeling scope (format:.shp) Surface elevation of the middle and downstream model (in the format of. Tif) All the above data are in the frame of WGS_1984_UTM_Zone_47N. Take heiflow_v1_et_2001m01.tif as an example to illustrate the naming rules of data files: HEIFLOW: model name V1: data set version 1.0 ET: variable name 2001M01: January 2000, where M represents month


Groundwater level dataset in the middle and lower of Heihe River Basin (2013-2015)

Through e-Sense / diver hydrological monitoring equipment and dynamic remote monitoring system, the hydrological monitoring data of key stations in Heihe River Basin in the three years from 2013 to 2015 in non freezing period are obtained, mainly including the temperature and water level of three groundwater (Qilian station, Linze station, Ejina station) and six river surface water (Yingluoxia station, Gaoya station, Zhengyixia station, shaomaying station, langxinshan station, Juyanhai station) According to the data, the time resolution is 1H.


Ecological attribute data set of oasis vegetation in the middle and lower reaches of Heihe River (2015-2017)

This data set contains observation data of vegetation ecological properties in the middle and lower reaches of heihe river from January 1, 2015 to July 31, 2017. It contains 355 data, among which 208 are populus eupoplar and 147 are tamarisk.Ecological attributes include 4 groups of ecological parameters and a total of 15 categories of 74 indicators, as follows: Vegetation structure parameters (25 indicators in 5 categories) : Coverage: total coverage, three-layer coverage, average diameter of canopy; Height: three-layer height, canopy thickness, litter thickness, moss thickness, maximum root depth; Density: layer density and average diameter of trees; Leaf area index: maximum leaf area index and minimum leaf area index of three layers of trees and grass; Phenological stage: leaf spreading stage, leaf filling stage, leaf deciduous stage, complete deciduous stage. Vegetation productivity parameters (16 indicators in 3 categories) : Aboveground biomass: total biomass, three-layer stem biomass, leaf biomass; Root biomass: root biomass, 0-5, 5-15, 15-30, 30-50, 50-100, 100-250cm fine root biomass; Other biomass: litter layer, moss layer biomass and carbon storage. Physiological and ecological parameters (24 indicators in 4 categories) : Biomass distribution: proportion of rhizome and leaf distribution; Element content: carbon content of roots and leaves, carbon - nitrogen ratio, carbon content of litters, carbon content of moss; Blade shape: specific leaf area, blade length and width, leaf inclination; Characteristics of gas exchange: leaf water potential, net photosynthetic rate, stomatal conductance, transpiration rate, air temperature, intercellular CO2 concentration, photosynthetic effective radiation, etc. Hydrological parameters of vegetation (3 categories and 9 indicators) : Redistribution of rainfall: maximum interception, canopy interception, rain penetration, trunk flow Yield flow: yield flow, yield coefficient; Evaporation: plant transpiration, soil evaporation, soil evaporation depth.