Current Browsing: Wide-angle infrared dual-mode line/Area array scanner


HiWATER: Wide-angle Infrared Dual-mode line/area Array Scanner, WIDAS (26th, July, 2012)

On 26 July 2012, a Wide-angle Infrared Dual-mode line/area Array Scanner (WIDAS) carried by the Y-12 aircraft was used in a visible near Infrared thermal Dual-mode airborne remote sensing experiment, which is located in the artificial oasis eco-hydrology experimental area (5×5 km). WIDAS includes an CCD cameras with spatial resolution 0.2 m, a visible near Infrared multispectral camera with five bands scanner (an maximum observation angle 48° and spatial resolution 1 m), and a thermal image camera with spatial resolution 4.8 m. The CCD camera data are recorded in DN values processed by mosaic and orthorectification. The multispectral camera data are recorded in reflectance processed by atmospheric and geometric correction. Thermal image camera data are recorded in radiation brightness temperature processed by atmospheric and geometric correction.

2019-09-15

HiWATER: Airborne CCD image data in the middle reaches of the Heihe River Basin on July. 26, 2012

On 26 July 2012, Wide-angle Infrared Dual-mode line/area Array Scanner (WIDAS) carried by the Harbin Y-12 aircraft was used in a visible near Infrared thermal Dual-mode airborne remote sensing experiment, which is located in the artificial oasis eco-hydrology experimental area (5×5 km). WIDAS includes a CCD camera with a spatial resolution of 0.2 m, a visible near Infrared multispectral camera with five bands scanner (an maximum observation angle 48° and spatial resolution 1 m), and a thermal image camera with a spatial resolution of 4.8 m. The CCD camera data are recorded in DN values processed by mosaic and orthorectification.

2019-09-15

HiWATER: Wide-angle infrared dual-mode line/area array scanner, WIDAS(1th, August, 2012)

On 1 August 2012 (UTC+8), a Wide-angle Infrared Dual-mode line/area Array Scanner (WIDAS) carried by the Harbin Y-12 aircraft was used in a visible near Infrared thermal Dual-mode airborne remote sensing experiment, which is located in the upper reaches of the Heihe River Basin. WIDAS includes a CCD camera with a spatial resolution of 0.08 m, a visible near Infrared multispectral camera with five bands scanner (an maximum observation angle 48° and spatial resolution 0.4 m), and a thermal image camera with a spatial resolution of 2 m. The CCD camera data are recorded in DN values processed by mosaic and orthorectification. The mutispectral camera data production are recorded in reflectance processed by atmospheric and geometric correction. Thermal image camera data production are recorded in radiation brightness temperature processed by atmospheric and geometric correction.

2019-09-13

HiWATER: Airborne CCD image data in the middle of Heihe River Basin on Aug. 01 ,2012

On 1 August 2012, Wide-angle Infrared Dual-mode line/area Array Scanner (WIDAS) carried by the Harbin Y-12 aircraft was used in a visible near Infrared thermal Dual-mode airborne remote sensing experiment, which is located in the artificial oasis eco-hydrology experimental area. WIDAS includes a CCD camera with a spatial of resolution 0.08 m, a visible near Infrared multispectral camera with five bands scanner (an maximum observation angle 48° and spatial resolution 0.4 m), and a thermal image camera with a spatial resolution of 2 m. The CCD camera data are recorded in DN values processed by mosaic and orthorectification.

2019-09-13

HiWATER: Wide-angle infrared dual-mode line/area array scanner, WIDAS(2th, August, 2012)

On 2 August 2012 (UTC+8), a Wide-angle Infrared Dual-mode line/area Array Scanner (WIDAS) carried by the Harbin Y-12 aircraft was used in a visible near Infrared thermal Dual-mode airborne remote sensing experiment, which is located in the artificial oasis eco-hydrology experimental area (30×30 km). WIDAS includes an CCD cameras with spatial resolution 0.26 m, a visible near Infrared multispectral camera with five bands scanner (an maximum observation angle 48° and spatial resolution 1.3 m), and a thermal image camera with spatial resolution 6.3 m. The CCD camera data production are recorded in DN values processed by mosaic and orthorectification. The mutispectral camera data production are recorded in reflectance processed by atmospheric and geometric correction. Thermal image camera data production are recorded in radiation brightness temperature processed by atmospheric and geometric correction.

2019-09-12

HiWATER: Airborne CCD image data production in the middle reaches of the Heihe River Basin(August 3,2012)

On 3 August 2012, Wide-angle Infrared Dual-mode line/area Array Scanner (WIDAS) carried by the Harbin Y-12 aircraft was used in a visible near Infrared thermal Dual-mode airborne remote sensing experiment, which is located in the artificial oasis eco-hydrology experimental area (5×5 km). WIDAS includes a CCD camera with a spatial resolution of 0.08 m, a visible near Infrared multispectral camera with five bands scanner (an maximum observation angle 48° and spatial resolution 0.4 m), and a thermal image camera with a spatial resolution of 2 m. The CCD camera data are recorded in DN values processed by mosaic and orthorectification.

2019-09-12

HiWATER: Simultaneous observation dataset of land surface temperature in the middle reaches of the Heihe River Basin

The aim of the simultaneous observation of land surface temperature is obtaining the land surface temperature of different kinds of underlying surface, including greenhouse film, the roof, road, ditch, concrete floor and so on, while the sensor of thermal infrared go into the experimental areas of artificial oases eco-hydrology on the middle stream. All the land surface temperature data will be used for validation of the retrieved land surface temperature from thermal infrared sensor and the analysis of the scale effect of the land surface temperature, and finally serve for the validation of the plausibility checks of the surface temperature product from remote sensing. 1. Observation time and other details On 25 June, 2012, ditch and asphalt road surface temperatures were observed once every five minutes using handheld infrared thermometers recorded. On 26 June, 2012, ditch and asphalt road surface temperatures were observed once every five minutes using handheld infrared thermometers while greenhouse film and concrete floor surface temperatures were observed once every one second using self-recording point thermometer. On 29 June, 2012, concrete floor surface temperatures were observed continuously using handheld infrared thermometers during the sensor of TASI go into the region. At the same time, greenhouse film and concrete floor surface temperatures were observed once every one second using self-recording point thermometer. On 30 June, 2012, asphalt road, ditch, bare soil, melonry and ridge of field surface temperatures were observed continuously using handheld infrared thermometers during the sensor of TASI go into the region. At the same time, greenhouse film and concrete floor surface temperatures were observed once every one second using self-recording point thermometer. On 10 July, 2012, asphalt road, ditch, bare soil, melonry and ridge of field surface temperatures were observed once every one minute using handheld infrared thermometers during the sensor of TASI go into the region. At the same time, concrete floor surface temperatures were observed once every six second using self-recording point thermometer. On 26 July, 2012, asphalt road, concrete floor, bare soil and melonry surface temperatures were observed once every one minute using handheld infrared thermometers during the sensor of WiDAS go into the region. At the same time, greenhouse film and concrete floor surface temperatures were observed once every six second using self-recording point thermometer. On 2 August, 2012, corn field and concrete floor surface temperatures were observed using handheld infrared thermometers. At the same time, greenhouse film and concrete floor surface temperatures were observed once every six second using self-recording point thermometer. For corn field, twelve sites were selected according to the flight strip of the WiDAS sensor, and for each site one plot surface temperatures were recorded continuously during the sensor of WiDAS go into the region. On 3 August, 2012, corn field and concrete floor surface temperatures were observed using handheld infrared thermometers. At the same time, greenhouse film and concrete floor surface temperatures were observed once every six second using self-recording point thermometer. For corn field, fourteen sites were selected according to the flight strip of the WiDAS sensor, and for each site three plots surface temperatures were recorded continuously during the sensor of WiDAS go into the region. 2. Instrument parameters and calibration The field of view of the self-recording point thermometer and the handheld infrared thermometer are 10 and 1 degree, respectively. The emissivity of the latter was assumed to be 0.95. The observation heights of the self-recording point thermometer for the greenhouse film and the concrete floor were 0.5 m and 1 m, respectively. All instruments were calibrated three times (on 6 July, 5 August and 20 September, 2012) using black body during observation. 3. Data storage All the observation data were stored in excel.

2019-09-12

HiWATER: Simultaneous observation dataset of land surface temperature in the upstream of the Heihe River Basin on Aug. 1, 2012

The aim of the simultaneous observation of river surface temperature is obtaining the land surface temperature in different places be of different kinds of underlying surface, while the sensor of WiDAS go into the experimental areas of the upstream of Heihe river basin. All the land surface temperature data will be used for validation of the retrieved land surface temperature from WiDAS sensor and the analysis of the scale effect of the land surface temperature, and finally serve for the validation of the authenticity of the surface temperature product from remote sensing. 1. Observation sites and other details Six places be of different kinds of underlying surface were chosen to observe surface temperature simultaneous in the upstream of Heihe river basin on 1 August. Self-recording point thermometers (observed once every 6 seconds) were used one place while handheld infrared thermometers (observed continuously during the sensor of WiDAS go into the region) were used in other five places. The main underlying surface including natural grassland, river section, river rapids, gravel. 2. Instrument parameters and calibration. The field of view of the self-recording point thermometer and the handheld infrared thermometer are 10 and 1 degree, respectively. The emissivity of the latter was assumed to be 0.95. All instruments were calibrated on 5 August, 2012 using black body during observation. 3. Data storage All the observation data were stored in excel.

2019-09-12

HiWATER: Airborne CCD image data in the midstream of Heihe River Basin(2012.08.02)

On 2 August 2012, Wide-angle Infrared Dual-mode line/area Array Scanner (WIDAS) carried by the Harbin Y-12 aircraft was used in a visible near Infrared thermal Dual-mode airborne remote sensing experiment, which is located in the artificial oasis eco-hydrology experimental area (30×30 km). WIDAS includes a CCD camera with a spatial resolution of 0.26 m, a visible near Infrared multispectral camera with five bands scanner (an maximum observation angle 48° and spatial resolution 1.3 m), and a thermal image camera with a spatial resolution of 6.3 m. The CCD camera data are recorded in DN values processed by mosaic and orthorectification.

2019-09-12

HiWATER: Wide-angle infrared dual-mode line/area array scanner, WIDAS(3th, August, 2012)

On 3 August 2012 (UTC+8), a Wide-angle Infrared Dual-mode line/area Array Scanner (WIDAS) carried by the Harbin Y-12 aircraft was used in a visible near Infrared thermal Dual-mode airborne remote sensing experiment, which is located in the artificial oasis eco-hydrology experimental area (5×5 km). WIDAS includes an CCD cameras with spatial resolution 0.08 m, a visible near Infrared multispectral camera with five bands scanner (an maximum observation angle 48° and spatial resolution 0.4 m), and a thermal image camera with spatial resolution 2 m. The CCD camera data production are recorded in DN values processed by mosaic and orthorectification. The mutispectral camera data production are recorded in reflectance processed by atmospheric and geometric correction. Thermal image camera data production are recorded in radiation brightness temperature processed by atmospheric and geometric correction.

2019-09-11