Current Browsing: Soil texture


Soil observation data of typical sample points in Heihe River Basin (2012-2014)

The data set contains soil observation data of typical sample points in Heihe River Basin: pH value and soil texture 1. Soil pH value: longitude, latitude and pH value of typical soil sample points. 2. Soil texture: including soil texture data of typical soil samples in Heihe River Basin from July 2012 to August 2013. The typical soil sampling method in Heihe River Basin is representative sampling, which means that the typical soil types in the landscape area can be collected, and the representative sample points should be collected as far as possible. According to the Chinese soil taxonomy, soil samples from each profile were taken based on the diagnostic layers and diagnostic characteristics.

2020-07-30

The HWSD soil texture dataset of the Qinghai Lake Basin (2009)

The dataset is the HWSD soil texture dataset of the Qinghai Lake Basin. The data comes from the Harmonized World Soil Database (HWSD) constructed by the Food and Agriculture Organization of the United Nations (FAO) and the Vienna International Institute for Applied Systems (IIASA). Version 1.1 was released on March 26, The data resolution is 1km. The soil classification system used is mainly FAO-90. The main fields of the soil attribute table include: SU_SYM90 (soil name in FAO90 soil classification system) SU_SYM85 (FAO85 classification) T_TEXTURE (top soil texture) DRAINAGE (19.5); ROOTS: String (depth classification of obstacles to the bottom of the soil); SWR: String (soil moisture characteristics); ADD_PROP: Real (a specific soil type related to agricultural use in the soil unit); T_GRAVEL: Real (gravel volume percentage); T_SAND: Real (sand content); T_SILT: Real (silt content); T_CLAY: Real (clay content); T_USDA_TEX: Real (USDA soil texture classification); T_REF_BULK: Real (soil bulk density); T_OC: Real (organic carbon content); T_PH_H2O: Real (pH) T_CEC_CLAY: Real (cation exchange capacity of cohesive layer soil); T_CEC_SOIL: Real (cation exchange capacity of soil) T_BS: Real (basic saturation); T_TEB: Real (exchangeable base); T_CACO3: Real (carbonate or lime content) T_CASO4: Real (sulfate content); T_ESP: Real (exchangeable sodium salt); T_ECE: Real (conductivity). The attribute field beginning with T_ indicates the upper soil attribute (0-30cm), and the attribute field beginning with S_ indicates the lower soil attribute (30-100cm) (FAO 2009). The data can provide model input parameters for modelers of the Earth system, and the agricultural perspective can be used to study eco-agricultural zoning, food security, and climate change.

2020-06-08

1:100,000 soil database in the upper reaches of the Yellow River (1995)

一.An overview The 1:100,000 soil database in the upper reaches of the Yellow River was tailored from the 1:100,000 soil database in China.The 1:100,000 soil database of China is based on the 1:100,000 soil map of the People's Republic of China compiled and published by the national soil census office in 1995.The database adopts the traditional "soil genetic classification" system, and the basic mapping unit is subcategories, which are divided into 12 classes of soil, 61 classes of soil and 227 classes of soil, covering all kinds of soil and its main attribute data in China. 二. Data processing instructions The 1:1 million soil database of China was established by the soil resources and digital management innovation research team led by shi xuezheng of nanjing soil research institute, Chinese academy of sciences, after four years.The database consists of two parts: soil spatial database and soil attribute database.The establishment of the database was funded by the knowledge innovation program of the Chinese academy of sciences and completed under the leadership of liu jiyuan and zhuang dafang. 三. data content description The soil spatial database, 1:1 million digitized soil maps of the country, is based on the 1:1 million soil maps of the People's Republic of China compiled and published by the national census offices in 1995.The digitized soil map faithfully reflects the appearance of the original soil map and inherited the mapping unit when the original soil map was compiled. Most of the basic mapping units are soil genera, which are divided into 12 classes, 61 classes and 235 subclasses. It is the only and most detailed digitized soil map in China. The soil attribute database, whose attribute data is quoted from the soil species record of China, is divided into six volumes, and nearly 2,540 soil species are collected.Soil property data can be divided into soil physical properties, soil chemical properties and soil nutrients.Soil physical properties soil particle composition and soil texture, soil chemical properties such as PH value, organic matter, soil nutrients include all N, all P, all K and effective P and effective K. 四. Data usage instructions Soil types and soil properties are an important content in the study of physical geography. With the help of 1:100,000 soil database in the upper reaches of the Yellow River, the type, quantity and spatial distribution of soil resources in the upper reaches of the Yellow River as well as the soil environment and characteristics can be understood and analyzed.This data set is of great significance for the early warning of large-scale soil erosion and the prediction of natural disasters in the upper reaches of the Yellow River.

2020-03-28

Digital soil mapping dataset of soil texture (soil particle-size fractions) in the upstream of the Heihe river basin (2012-2016)

Select the soil mechanical composition data of 0-20cm depth of soil surface, select the optimal spatial prediction mapping method of soil composition data, and make the spatial distribution data product of soil texture (particle size composition). The American system classification is used as the standard of soil particle classification. The source data of this data set comes from the soil sampling data integrated by the data center of cold and dry areas and the major research plan integration project of Heihe River Basin (spatial interpolation and dynamic simulation analysis of vegetation and environmental elements in the upper reaches of Heihe River basin / approval No. 91325204).

2020-03-28

Digital soil mapping dataset of soil texture (soil particle-size fractions)in the Tianlaochi basin (2012-2014)

Select the soil mechanical composition data with a depth of 0-20cm on the surface of the soil, select the optimal spatial prediction mapping method for soil composition data, and make the spatial distribution data product of soil texture (particle size composition). The classification standard of soil particle size is American classification. The source data of this data set are from the data center of cold and drought regions, soil physical properties-soil bulk density and mechanical composition data set soil sampling profile data of Tianlaochi watershed in Qilian mountain.

2020-03-28

Digital soil mapping dataset of soil texture (soil particle-size fractions) in the Heihe river basin (2012-2016)

Select the soil mechanical composition data of 0-20cm depth of soil surface, select the optimal spatial prediction mapping method of soil composition data, and make the spatial distribution data product of soil texture (particle size composition). The American system classification is used as the standard of soil particle classification. The source data of this data set comes from the soil sampling data integrated by the data center of cold and dry areas and the major research plan integration project of Heihe River Basin (spatial interpolation and dynamic simulation analysis of vegetation and environmental elements in the upper reaches of Heihe River basin / approval No. 91325204).

2020-03-27

Digital soil mapping dataset of soil texture in the Heihe river basin (2012-2014)

The American system classification is used as the standard of soil particle classification. The source data of this data set comes from the soil profile data integrated by the major research plan integration project of Heihe River Basin (soil data integration and soil information product generation of Heihe River Basin, 91325301). The prediction method is mainly based on the soil landscape model. The basic theory of the model is the classic soil genesis theory. The model regards the soil as the product of the comprehensive effects of climate, topography, parent material, biology and time. Scope: Heihe River Basin; Projection: WGS · 1984 · Albers; Spatial resolution: 100M; Data format: TIFF; Data content: spatial distribution of soil clay, silt and sand content Prediction method: enhanced regression tree Environmental variables: main soil forming factors

2020-03-27

HiWATER: Dataset of soil parameters in the midstream of the Heihe River Basin (2012)

This data was measured in middle stream of the Heihe River Basin in year 2012. Soil texture, porosity, bulk density, saturated water conductivity, soil organic matter were measured for each layer of the soil profile which is very close to the AMS sites. This data can be used in land surface model and ecological model. Soil profile position: The coordinate of the profile is listed as follow. No.1 to No.17 is corresponding to the AMS number in the Matrix. No. x y 1 100.3582 38.89322 2 100.3541 38.88697 3 100.3763 38.89057 5 100.3506 38.87577 6 100.3597 38.8712 7 100.3652 38.87677 8 100.3765 38.87255 9 100.3855 38.87241 10 100.3957 38.87569 11 100.342 38.86994 12 100.3663 38.86516 13 100.3785 38.86077 14 100.3531 38.85869 16 100.3641 38.8493 17 100.3697 38.84512 15 (superstation) 100.3721 38.85547 Gebi 100.3058 38.91801 Huazhaizi 100.3189 38.7652 Shenshawo 100.4926 38.78794 Instruments: Soil texture: Microtrac laser particle analyzer Porosity: Ring sampler law Bulk density: Ring sampler law Saturated Water Conductivity: hydrostatic head method Soil organic matter: Total organic carbon analyzer (TOC-VCPH) Measuring time: 2012-5-20 to 2012-7-10 (UTC+8). Measuring content: Soil texture, porosity, bulk density, saturated water conductivity, soil organic matter.

2019-09-15