According to the global soil map. Net standard, the 0-1m soil depth is divided into 5 layers: 0-5cm, 5-15cm, 15-30cm, 30-60cm and 60-100cm. According to the principle of soil landscape model, the spatial distribution data products of soil organic carbon content in different layers are produced by using the digital soil mapping method. The source data of this data set comes from the soil profile data integrated by the major research plan integration project of Heihe River Basin (soil data integration and soil information product generation of Heihe River Basin, 91325301). Scope: Heihe River Basin; Projection: WGS · 1984 · Albers; Spatial resolution: 100M; Data format: TIFF; Dataset content: hh_soc_layer1.tif: 0-5cm soil organic carbon content; hh_soc_layer2.tif: 5-15cm soil organic carbon content; hh_soc_layer3.tif: 15-30cm soil organic carbon content; hh_soc_layer4.tif: 30-60cm soil organic carbon content; hh_soc_layer5.tif: 60-100cm soil organic carbon content;
2020-09-30
The ground sample data was collected by LAI-2000 canopy analyzer, and the collection area was located in Dayekou, Wuxing Village (2012) and other areas. The main measure of vegetation is corn. The LAI value of the corn was obtained using the LAI2000, and the observation was repeated twice in a pattern of “one up and four down”. The leaf area of each leaf of the corn plant was obtained using CD202, and a total of three corns were collected.
2020-09-15
Image format: tif Image size: about 925M per scene Time range: may-october 2012 Time resolution: month Spatial resolution: 30m The algorithm firstly adopts the canopy BRDF model and presents the canopy reflectivity as a function of a series of parameters such as FAPAR, wavelength, reflectance of soil and leaves, aggregation index, incidence and observation Angle.The parameter table is established for several key parameters as the input of inversion.Then input the pre-processed surface reflectance data and land cover data, and invert LAI/FAPAR products by look-up table (LUT) method. See references for detailed algorithm.
2020-03-15
Water scarcity,food crises and ecological deterioration caused by drought disasters are a direct threat to food security and socio-economic development. Improvement of drought disaster risk assessment and emergency management is now urgently required. This article describes major scientific and technological progress in the field of drought disaster risk assessment. Drought is a worldwide natural disaster that has long affected agricultural production as well as social and economic activities. Frequent droughts have been observed in the Belt and Road area, in which much of the agricultural land is concentrated in fragile ecological environment. Soil relative humidity index is one of the indicators to characterize soil drought and can directly reflect the status of crops' available water.
2020-03-10
Firstly, the canopy reflectance is expressed as a function of a series of parameters, such as Lai / fAPAR, wavelength, soil and leaf reflectance, aggregation index, incidence and observation angle. For several key parameters, the parameter table is established as the input of inversion. Then input the surface reflectance data and land cover data after preprocessing, and use the LUT method to retrieve the fAPAR products. See the reference for detailed algorithm. Image format: TIF Image size: about 1m per scene Time frame: 2012 Time resolution: month by month Spatial resolution: 1km
2020-03-10
The algorithm firstly adopts the canopy BRDF model and represents the canopy reflectivity as a function of a series of parameters such as LAI/FAPAR, wavelength, reflectivity of soil and leaves, aggregation index, incidence and observation Angle.The parameter table is established for several key parameters as the input of inversion.Then input the pre-processed surface reflectance data and land cover data, and use look-up table (LUT) inversion to obtain FAPAR products.See references for detailed algorithms. Image format: tif Image size: about 1M per scene Time range: 2000-2012 Temporal resolution: 8 days Spatial resolution: 1km
2020-03-08
The algorithm firstly adopts the canopy BRDF model and represents the canopy reflectivity as a function of a series of parameters such as LAI/FAPAR, wavelength, reflectivity of soil and leaves, aggregation index, incidence and observation Angle.The parameter table is established for several key parameters as the input of inversion.Then input the pre-processed surface reflectance data and land cover data, and invert LAI products by look-up table (LUT) method.See references for detailed algorithms. Image format: tif Image size: about 1M per scene Time range: 2000-2012 Temporal resolution: 8 days Spatial resolution: 1km
2020-03-08
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn