This dataset contains the spectra of white cloth and black cloth obtained in the simultaneous time during the airborn remote sensing which supports the airboren data preprocessing as CASI, SASI and TASI , and the spetra of the typical targets in the middle reaches of the Heihe River Basin. Instruments: SVC-HR1024 from IRSA, ASD Field Spec 3 from CEODE, Reference board Measurement method: the spectra radiance of the targets are vertically measured by the SVC or ASD; before and after the target, the spectra radiance of the reference board is measured as the reference. This dataset contains the spectra recorded by the SVC-HR1024 ( in the format of .sig which can be opened by the SVC-HR1024 software or by the notepad ) and the ASD (in the format of .asd), the observation log (in the format of word or excel), and the photos of the measured targets. Observation time: 15-6-2012, the spectra of typical targets in the EC matrix using SVC 16-6-2012, the spectra of typical targets in the wetland by SVC 29-6-2012, the spectra of typical vegetation and soil in Daman site and Gobi site by ASD 29-6-2012, the spectra of white cloth and black cloth by ASD which is simultaneous with the airborne CASI data 30-6-2012, the spectra of vegetation and soil in the desert by ASD 5-7-2012, the spectra of white cloth and black cloth by ASD which is simultaneous with the airborne CASI data 7-7-2012, the spectra of corn in the Daman site for the research of daily speral variation. 8-7-2012, the spectra of white cloth and black cloth by ASD which is simultaneous with the airborne CASI data 8-7-2012, the spectra of corn in the Daman site by ASD for the research of daily speral variation 9-7-2012, the spectra of corn in the Daman site by ASD for the research of daily speral variation 10-7-2012, the spectra of corn in the Daman site by ASD for the research of daily speral variation 11-7-2012, the spectra of corn in the Daman site by ASD for the research of daily speral variation. The time used in this dataset is in UTC+8 Time.
2019-09-15
The dataset contains vegetation type in the middle reaches of the Heihe River Basin, which was used to validate products from remote sensing. It was generated from investigating the land cover strips of CASI during 2012. Instruments: High-precision handheld GPS (2-3 m) and digital camera were used as main tools in the survey. Measurement method: Hierarchical classification is applied based on CASI data. According to various land types, pixel classifications is used for forest, grassland, bare land and building lands; in-situ observations and investigations are used for different crops. Dataset contains: land types, including maize, leek, poplar trees, cauliflower, bell pepper, potatoes, endive sprout, orchard, watermelon, kidney bean, pear orchard, shadow, and non-vegetation, except for 14 others which are not classified. Observation site: core experimental areas with 5*5 matrix structure in the middle reaches of the Heihe river basin Date: From 25 June in 2012 (UTC+8) on.
2019-09-15
On 25 July 2012, a Leica ALS70 airborne laser scanner boarded on the Y-12 aircraft was used to obtain the point cloud data. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 4800 m with the point cloud density 1 points per square meter. Aerial LiDAR-DEM was obtained through parameter calibration, automatic classification of point cloud density and manual editing.
2019-09-15
In July 19, 2012 (UTC+8), the airborne LIDAR data is acquired in the foci area in the Heihe,middle reaches, which can provide high spatial resolution (m) and high precision (20 cm) of the surface elevation information. Based on airborne LIDAR data processing, the land surface DEM, DSM and point cloud density map were generated. By subtracting DSM and DEM directly, a Vegetation height product in the middle reaches of the Heihe River Basin was obtained. The product overall accuracy is 88%.
2019-09-15
Spectral reflectance observation was carried out for the typical underlying surface and black and white cloth in the low reaches of the Heihe River Basin during the aviation flight experiment in 2014, which will provide basic data set for the preprocessing of the flight data. 1. Observation Instrument PRS-3500 portable spectrometer, with the spectral range is 350-2500 nm, and the reference board. 2. Samples and observation methods The samples including the black and white cloth, the cantaloupe, the Tamarix chinensis, the Populus euphratica, the reeds, the weeds, the Karelinia caspica, the sandy soil, the gobi, the Sophora alopecuroides and so on. Reflectance of the reference board was measure vertically for once and then objective reflectance were measured for five times for each observation objective. 3. Observation time The typical underlying surface vegetation observation was on days of 24 July, 27 July, 31 July, 2014. The black and white cloth simultaneous observation was on 29 July, 2014. 4. Data storage The observation recorded data were stored in excel and the original spectral data were stored in *.sed files derived from the spectrometer, which can be opened by the matched software of the spectrometer or by a txt.
2019-09-15
A land surface temperature observation system was set up in apple orchard near by the No.17 eddy covariance system of the MUlti-Scale Observation experiment on Evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12). This observation site can offer in situ calibration data of apple trees for TASI, WiDAS and L band sensor used in aerospace experiment. Observation Site: This point is located in a large and homogeneous apple orchard in Zhangye Experiment Field, Gansu Academy of Agricultural Sciences. It’s 4 meters away from southwest of No.17 eddy covariance system, and observation height is 4.55 m. Crown size of observed apple tree is 4 m × 4 m. Underlying surface of observation site is mainly apple trees. The coordinates of this site: 38°50′41.70" N,100°22′11.40" E. Observation Instrument: The observation system consists of one SI-111 infrared radiometers (Campbell, USA) installed vertically downward to apple tree. Observation Time: This site operates from 3 August, 2012 to 27 September, 2012. Observation data laagered by every 1 minute uninterrupted. Output data contained sample data of every 1 minute. Accessory data: Land surface (apple tree) infrared temperature (by SI-111) can be obtained. Dataset is stored in *.dat file, which can be read by Microsoft excel or other text processing software (UltraEdit, et. al). Table heads meaning: Target_C_Avg, apple tree temperature @ 4.55 m (℃); SBT_C_Avg, body temperature of SI-111 sensor (℃). Dataset is stored day by day, named as: data format + site name + interval time + date + time. The detailed information about data item showed in data header introduction in dataset.
2019-09-15
Zhanye Airport desert observation system can offer in situ calibration data for TASI, WiDAS and L band sensor used in aerospace experiment. Observation Site: This point is located in a large, homogeneous and flatten desert near by Zhangye Airport. The main vegetation type is Sparse and low shrub. The coordinates of this site: 38°4′41.30" N, 100°41′48.10" E. Observation Instrument: The observation system consists of two SI-111 infrared radiometers (Campbell, USA), one installed vertically downward to land surface, another face to south of zenith angle 35°. SI-111 sensor installed at 4.0 m height. Observation Time: This site operates from 10 June, 2012 to today. Observation data laagered by every 5 seconds uninterrupted. Output data contained sample data of every 5 seconds and mean data of 1 minute. Accessory data: Land surface infrared temperature (by SI-111), sky infrared temperature (by SI-111) can be obtained. Dataset is stored in *.dat file, which can be read by Microsoft excel or other text processing software (UltraEdit, et. al). Table heads meaning: TarT_Atm, Sky infrared temperature @ facing south of zenith angle 35° (℃); SBT_Atm, body temperature of SI-111 sensor (℃) measured sky; TarT_Sur, land surface infrared temperature @ 4.0 m height; SBT_Sur, body temperature of SI-111 sensor (℃) measured land surface. Dataset is stored day by day, named as: data format + site name + interval time + date + time. The detailed information about data item showed in data header introduction in dataset.
2019-09-15
On 25 July 2012, a Leica ALS70 airborne laser scanner boarded on the Y-12 aircraft was used to obtain the point cloud data. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 4800 m with the point cloud density 1 points per square meter. Aerial LiDAR- DSM was obtained through parameter calibration, automatic classification of point cloud density and manual editing.
2019-09-15
Our project entrust the L band radiosonde sounding encrypt observations to Zhangye National Climate Observatory, and collect regular observation twice a day. The dataset contains three times one day at 8:00, 14:00, 20:00, which can support the remote sensing image atmospheric correction and atmospheric science research. Observation Site: Zhangye National Climate Observatory located in Shajing Town, west of ZhangYe. The coordinates of this site: 39°5′15.68" N, 100°16′39.11" E。 Observation Instrument: China Meteorological Administration Operational L Band radiosonde system. Observation Time: The observation date last from 1 May, 2012 to 31 September, 2012, among which: Three times observations at 7:00-8:00, 13:00-14:00 and 19:00-20:00 during 1 June, 2012 to 31 August, 2012; twice at 7:00-8:00 and 19:00-20:00 during 2012-5-1 to 5-31 and 2012-9-1 to 9-31. Accessory data: Pressure, temperature, relative humidity, wind speed and wind direction profiles data.
2019-09-15
On 28 August 2012, Leica ALS70 airborne laser scanner carried by the Harbin Y-12 aircraft was used in a LiDAR airborne optical remote sensing experiment. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second ,third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 4800 m with the point cloud density 1.6 point per square meter. Airborne LiDAR-DEM and DSM data production were obtained through parameter calibration, automatic classification of point cloud density and manual editing.
2019-09-15
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn