On 25 July 2012, a Leica ALS70 airborne laser scanner boarded on the Y-12 aircraft was used to obtain the point cloud data. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 4800 m with the point cloud density 1 points per square meter. Aerial LiDAR-DEM was obtained through parameter calibration, automatic classification of point cloud density and manual editing.
2019-09-15
Trough the select tasking, we obtained the WorldView-2 stereo image data in Dayekou Basin production in mid-May 2012. In the same year from July to August, 27 GPS ground control points (GCP) and checkpoints were measured based on the watershed differential GPS control network. Based on the full-field GCPs, the rational polynomial coefficients (RPC) files of WorldView-2 images were corrected in the digital photogrammetry software system. In the stereo model, 60 high-precision tie points evenly distributed were got through image matching technology, and the 1-m and 2-m resolution digital elevation model (DEM) were rapid extracted. Moreover, the DEM was edited in some key areas, such as the shady forest coverage and Dayekou reservoir. The terrain feature points and line data were added to improve the accuracy of the results in large variation of terrain feature. Check points were composed of GPS points and model confidential points, which used for quantitative validation. And they root mean square errors RMSE were 1.9 meters and 1.2 meters respectively, which achieve the requirements of two degree accuracy of 2.0 m at a scale of 1:2000 in high mountains.
2019-09-15
On 25 July 2012, a Leica ALS70 airborne laser scanner boarded on the Y-12 aircraft was used to obtain the point cloud data. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 5500 m with the point cloud density 1 points per square meter. Aerial LiDAR-DEM was obtained through parameter calibration, automatic classification of point cloud density and manual editing.
2019-09-15
On 19 July 2012 (UTC+8), Leica ALS70 airborne laser scanner carried by the Harbin Y-12 aircraft was used in a LiDAR airborne optical remote sensing experiment. The relative flight altitude is 1500 m (the elevation of 2700 m). Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm with the point cloud density 4 points per square meter. Based on the original Airborne LiDAR-DEM data production were obtained through parameter calibration, automatic classification of point cloud density and manual editing.
2019-09-15
On 25 August 2012, Leica ALS70 airborne laser scanner boarded on the Y-12 aircraft was utilized to obtain point cloud data. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 5200 m with the point cloud density 1 point per square meter. Aerial LiDAR-DEM was obtained through parameter calibration, automatic classification of point cloud density and manual editing.
2019-09-14
On 19 August 2012, a Leica ALS70 airborne laser scanner boarded on the Y-12 aircraft was used to obtain the Lidar point cloud data. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 2900 m with the point cloud density 1 point per square meter. Aerial LiDAR-DEM was obtained through parameter calibration, automatic classification of point cloud density and manual editing.
2019-09-12
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn