Current Browsing: Skin temperature


Manual observation of meteorological data in Hulugou sub-basin of Heihe River Basin (2011)

1. Data overview In 2011, the manual observation data set of standard meteorological field of Qilian station was used to observe various meteorological elements at 8:00, 14:00 and 20:00 every day. 2. Data content Data content includes dry bulb temperature, wet bulb temperature, maximum temperature, minimum temperature, surface temperature (0cm), shallow surface temperature (5cm, 10cm, 15cm, 20cm), maximum ground temperature and minimum ground temperature. 3. Time and space Geographic coordinates: longitude: 99.9e; latitude: 38.3n; altitude: 2980m

2020-03-11

Manual observation of meteorological data in Hulugou sub-basin of Heihe River Basin (2013)

1. Data overview: In 2013, the standard meteorological field of qilian station, Cold and Arid Regions Environmental and Engineering Research Institute, observed various meteorological elements manually at time of 8:00, 14:00 and 20:00 every day. 2. Data content: The data include dry bulb temperature, wet bulb temperature, maximum temperature, minimum temperature, surface temperature (0cm), shallow surface temperature (5cm, 10cm, 15cm, 20cm), maximum surface temperature, minimum surface temperature. 3. Space and time range: Geographical coordinates: longitude: 99.9e; Latitude: 38.3n; Height: 2980 m.

2020-03-11

Manual observation of meteorological data in Hulugou sub-basin of Heihe River Basin (2012)

1. Data overview: In 2012, the standard meteorological field of qilian station, Cold and Arid Regions Environmental and Engineering Research Institute, observed various meteorological elements manually at time of 8:00, 14:00 and 20:00 every day. 2. Data content: The data include dry bulb temperature, wet bulb temperature, maximum temperature, minimum temperature, surface temperature (0cm), shallow surface temperature (5cm, 10cm, 15cm, 20cm), maximum surface temperature, minimum surface temperature. 3. Space and time range: Geographical coordinates: longitude: 99.9e;Latitude: 38.3n;Height: 2980 m.

2020-03-11

HiWATER: Simultaneous observation dataset of land surface temperature in the middle reaches of the Heihe River Basin

The aim of the simultaneous observation of land surface temperature is obtaining the land surface temperature of different kinds of underlying surface, including greenhouse film, the roof, road, ditch, concrete floor and so on, while the sensor of thermal infrared go into the experimental areas of artificial oases eco-hydrology on the middle stream. All the land surface temperature data will be used for validation of the retrieved land surface temperature from thermal infrared sensor and the analysis of the scale effect of the land surface temperature, and finally serve for the validation of the plausibility checks of the surface temperature product from remote sensing. 1. Observation time and other details On 25 June, 2012, ditch and asphalt road surface temperatures were observed once every five minutes using handheld infrared thermometers recorded. On 26 June, 2012, ditch and asphalt road surface temperatures were observed once every five minutes using handheld infrared thermometers while greenhouse film and concrete floor surface temperatures were observed once every one second using self-recording point thermometer. On 29 June, 2012, concrete floor surface temperatures were observed continuously using handheld infrared thermometers during the sensor of TASI go into the region. At the same time, greenhouse film and concrete floor surface temperatures were observed once every one second using self-recording point thermometer. On 30 June, 2012, asphalt road, ditch, bare soil, melonry and ridge of field surface temperatures were observed continuously using handheld infrared thermometers during the sensor of TASI go into the region. At the same time, greenhouse film and concrete floor surface temperatures were observed once every one second using self-recording point thermometer. On 10 July, 2012, asphalt road, ditch, bare soil, melonry and ridge of field surface temperatures were observed once every one minute using handheld infrared thermometers during the sensor of TASI go into the region. At the same time, concrete floor surface temperatures were observed once every six second using self-recording point thermometer. On 26 July, 2012, asphalt road, concrete floor, bare soil and melonry surface temperatures were observed once every one minute using handheld infrared thermometers during the sensor of WiDAS go into the region. At the same time, greenhouse film and concrete floor surface temperatures were observed once every six second using self-recording point thermometer. On 2 August, 2012, corn field and concrete floor surface temperatures were observed using handheld infrared thermometers. At the same time, greenhouse film and concrete floor surface temperatures were observed once every six second using self-recording point thermometer. For corn field, twelve sites were selected according to the flight strip of the WiDAS sensor, and for each site one plot surface temperatures were recorded continuously during the sensor of WiDAS go into the region. On 3 August, 2012, corn field and concrete floor surface temperatures were observed using handheld infrared thermometers. At the same time, greenhouse film and concrete floor surface temperatures were observed once every six second using self-recording point thermometer. For corn field, fourteen sites were selected according to the flight strip of the WiDAS sensor, and for each site three plots surface temperatures were recorded continuously during the sensor of WiDAS go into the region. 2. Instrument parameters and calibration The field of view of the self-recording point thermometer and the handheld infrared thermometer are 10 and 1 degree, respectively. The emissivity of the latter was assumed to be 0.95. The observation heights of the self-recording point thermometer for the greenhouse film and the concrete floor were 0.5 m and 1 m, respectively. All instruments were calibrated three times (on 6 July, 5 August and 20 September, 2012) using black body during observation. 3. Data storage All the observation data were stored in excel.

2019-09-12