This dataset contains the flux measurements from the large aperture scintillometer (LAS) at site No.2 in the flux observation matrix. There were two types of LASs at site No.2: German BLS900 and German BLS450. The observation periods were from 7 June to 19 September, 2012, and 18 June to 19 September, 2012, for the BLS900 and the BLS450, respectively. The north tower is placed with the receiver of BLS900 and the transmitter of BLS450, and the south tower is placed with the transmitter of BLS900 and the receiver of BLS450. The site (north: 100.363° E, 38.883° N; south: 100.362° E, 38.857° N) was located in the Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1552.75 m. The underlying surface between the two towers contains corn, greenhouse, and village. The effective height of the LASs was 33.45 m; the path length was 2841 m. Data were sampled at 1 min intervals. Raw data acquired at 1 min intervals were processed and quality-controlled. The data were subsequently averaged over 30 min periods. The main quality control steps were as follows. (1) The data were rejected when Cn2 was beyond the saturated criterion (Cn2>4.08E-14). (2) Data were rejected when the demodulation signal was small (BLS900: Average X Intensity<1000; BLS450: Minimum X<50). (3) Data were rejected within 1 h of precipitation. (4) Data were rejected at night when weak turbulence occurred (u* was less than 0.1 m/s). The sensible heat flux was iteratively calculated by combining with meteorological data and based on Monin-Obukhov similarity theory. There were several instructions for the released data. (1) The data were primarily obtained from BLS900 measurements; missing flux measurements from the BLS900 were filled with measurements from the BLS450. Missing data were denoted by -6999. (2) The dataset contained the following variables: data/time (yyyy-mm-dd hh:mm:ss), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). (3) In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.
2019-09-13
This dataset contains the flux measurements from the large aperture scintillometer (LAS) at A’rou Superstation in the hydrometeorological observation network of Heihe River Basin between 14 October, 2012, and 31 December, 2013. There were two types of LASs at A’rou Superstation: German BLS450 and China zzlas. The north tower was set up with the zzlas receiver and the BLS450 transmitter, and the south tower was equipped with the zzlas transmitter and the BLS450 receiver. Zzlas has been in use since 14 October, 2012, and the observation period of BLS450 was from 9 August to 10 December, 2013. The site (north: 100.467° E, 38.050° N; south: 100.450° E, 38.033° N) was located in Caodaban village of A’rou town in Qilian county, Qinghai Province. The underlying surface between the two towers was alpine meadow. The elevation is 3033 m. The effective height of the LASs was 9.5 m, and the path length was 2390 m. The data were sampled at 5 Hz and 1 Hz intervals for BLS450 and zzlas, respectively, and then averaged over 1 min. The raw data acquired at 1 min intervals were processed and quality controlled. The data were subsequently averaged over 30 min periods, in which sensible heat flux was iteratively calculated by combining Cn2 with meteorological data according to the Monin-Obukhov similarity theory. The main quality control steps were as follows: (1) The data were rejected when Cn2 exceeded the saturated criterion (BLS450: Cn2>7.25E-14, zzlas: Cn2>7.84E-14). (2) The data were rejected when the demodulation signal was small (BLS450: Average X Intensity<1000; zzlas: Demod>-20 mv). (3) The data were rejected when collected during precipitation. (4) The data were rejected if collected at night when weak turbulence occurred (u* was less than 0.1 m/s). In the iteration process, the universal functions of Thiermann and Grassl, 1992 and Andreas, 1988 were selected for BLS450 and zzlas, respectively. Several instructions were included with the released data. (1) The data were primarily obtained from BLS450 measurements, and missing flux measurements from the BLS450 instrument were substituted with measurements from the zzlas instrument. The missing data were denoted by -6999. Due to the drift of the zzlas signal, data from 10 November to 23 November, 2012, and 14 March to 10 April, 2013, were excluded. Due to the LAS tower’s lean, the data from 10 April to 31 May, 2013, were not collected. (2) The dataset contained the following variables: data/time (yyyy-m-d h:mm), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). In this dataset, a time of 0:30 corresponds to the average data for the period between 0:00 and 0:30, and the data were stored in *.xls format. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.
2019-09-13
This dataset contains the flux measurements from site No.14 eddy covariance system (EC) in the flux observation matrix from 30 May to 21 September, 2012. The site (100.35310° E, 38.85867° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1570.23 m. The EC was installed at a height of 4.6 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.15 m. Raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.
2019-09-13
This dataset contains the flux measurements from site No.8 eddy covariance system (EC) in the flux observation matrix from 28 May to 21 September, 2012. The site (100.37649° E, 38.87254° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1550.06 m. The EC was installed at a height of 3.2 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500) was 0.15 m. Raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.
2019-09-13
This dataset contains the flux measurements from site No.6 eddy covariance system (EC) in the flux observation matrix from 28 May to 21 September, 2012. The site (100.35970° E, 38.87116° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1562.97 m. The EC was installed at a height of 4.6 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. Raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.
2019-09-13
This dataset contains the flux measurements from the Zhangye wetland station eddy covariance system (EC) in the middle reaches of the Heihe hydrometeorological observation network from 15 September, 2012, to 21 November, 2013. The site (100.446° E, 38.975° N) was located in the desert steppe surface, near Zhangye city in Gansu Province. The elevation is 1460 m. The EC was installed at a height of 5.2 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (Gill&Li7500A) was 0.25 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software (Li-Cor Company, http://www.licor.com/env/products/eddy_covariance/software.html), including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), as proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened using a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Due to the calibration of CO2/H2O gas analyzer and CF card storage problem, data during 28 May to 30 May, and 21 November to 31 December, 2013 were missing. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.
2019-09-12
This dataset contains the flux measurements from the large aperture scintillometer (LAS) at site No.4 in the flux observation matrix. There were two types of LASs at site No.4: German BLS450 and China zzlas. The observation periods were from 2 June to 22 September, 2012 and 11 June to 20 September, 2012, for the BLS450 and the zzlas, respectively. The north tower is placed with the receiver of BLS450 and the transmitter of zzlas, and the south tower is placed with the transmitter of BLS450 and the receiver of zzlas. The site (north: 100.379° E, 38.861° N; south: 100.369° E, 38.847° N) was located in the Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1552.75 m. The underlying surface between the two towers contains corn, greenhouse, and village. The effective height of the LASs was 33.45 m; the path length was 1854 m. Data were sampled at 1 min intervals. Raw data acquired at 1 min intervals were processed and quality-controlled. The data were subsequently averaged over 30 min periods. The main quality control steps were as follows. (1) The data were rejected when Cn2 was beyond the saturated criterion (Cn2>1.01E-13). (2) Data were rejected when the demodulation signal was small (BLS450: Average X Intensity<1000, zzlas: Demod<-40 mv). (3) Data were rejected within 1 h of precipitation. (4) Data were rejected at night when weak turbulence occurred (u* was less than 0.1 m/s). The sensible heat flux was iteratively calculated by combining with meteorological data and based on Monin-Obukhov similarity theory. There were several instructions for the released data. (1) The data were primarily obtained from BLS450 measurements. Missing data were denoted by -6999. (2) The dataset contained the following variables: data/time (yyyy-mm-dd hh:mm:ss), the structural parameter of the air refractive index (Cn2, m-2/3), and the sensible heat flux (H_LAS, W/m^2). (3) In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.
2019-09-12
This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of Huazhaizi desert steppe station between 22 September, 2012, and 31 December, 2013. The site (100.319° E, 38.765° N) was located on a desert steppe surface in the Huazhaizi, which is near Zhangye city, Gansu Province. The elevation is 1731 m. There are two equipment in the site, and installed by Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences (CAREERI) and Beijing Normal University (BNU), respectively. The installation heights and orientations of BNU were as follows: two infrared temperature sensors (SI-111; 2.65 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.2, -0.6, and -1 m), and soil moisture profile (ML2X; -0.04, -0.2 and -1 m). For the CAREERI installation: air temperature and humidity profile (HMP45C; 1, 1.99 and 2.99 m, north), wind speed profile (03102; 0.48, 0.98, 1.99 and 2.99 m, north), wind direction (03302; 4 m, north), air pressure (PTB210; in waterproof box), rain gauge (CTK-15PC; 0.7 m), four-component radiometer (CNR1; 2.5 m, south), soil temperature profile (107; -0.04, -0.1, -0.18, -0.26, -0.34, -0.42 and -0.5 m), and soil moisture profile (ML2X; -0.02, -0.1, -0.18, -0.26, -0.34, -0.42, -0.5, and -0.58 m, 3 duplicates in -0.02 m). The observations included the following: (1) infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2, and Gs_3) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_20 cm, Ts_60 cm and Ts_100 cm) (℃), and soil moisture (Ms_4 cm, Ms_20 cm and Ms_100 cm) (%). (2) air temperature and humidity (Ta_1 m, Ta_1.99 m and Ta_2.99 m; RH_1 m, RH_1.99 m and RH_2.99 m) (℃ and %, respectively), wind speed (Ws_0.48 m, Ws_0.98 m, Ws_1.99 m and Ws_2.99 m) (m/s), wind direction (WD_4 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), soil temperature (Ts_4 cm, Ts_10 cm, Ts_18 cm, Ts_26 cm, Ts_34 cm, Ts_42 cm and Ts_50 cm) (℃), and soil moisture (Ms_2 cm_1, Ms_2 cm_2, Ms_2 cm_3, Ms_10 cm, Ms_18 cm, Ms_26 cm, Ms_34 cm, Ms_42 cm, Ms_50 cm and Ms_58 cm) (%, volumetric water content). The data processing and quality control steps were as follows: (1) The BNU data were averaged over intervals of 10 min, The CAREERI data were averaged over intervals of 30 min. A total of 144 runs per day were recorded in BNU data and 48 records per day in CAREERI data. The BNU data during 30 June, 2013 and 26 July, 2013 were missing during the malfunction of datalogger. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.
2019-09-12
This dataset contains eddy correlation instrument observation data from the Huyanglin station downstream of the Heihe Hydrological and Meteorological Observation Network from January 1, 2014 to December 31, 2014. The site is located in Sidaoqiao, Ejin Banner, Inner Mongolia, and the underlying surface is Populus euphratica. The latitude and longitude of the observation point is 101.1236E, 41.9928N, and the altitude is 876m. The vortex correlator has a height of 22 m and a sampling frequency of 10 Hz. The ultrasonic orientation is in the north direction, and the distance between the ultrasonic wind speed temperature meter (CSAT3) and the CO2/H2O analyzer (Li7500) is 17 cm. The original observation data of the eddy correlation meter is 10 Hz, and the released data is 30 minutes of data processed by Eddypro software. The main steps of the processing include: outlier removal, time-lag correction, coordinate rotation (secondary coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction, etc. At the same time, the quality evaluation of each flux value is conducted, it mainly contains atmosphere state stability test(Δst) and integrated turbulence characteristic test(ITC). The 30-min flux value output by Eddypro software was also screened: (1) data from the instrument error was eliminated; (2) data 1 h before and after precipitation was removed; (3) data from the deletion rate greater than 10% within every 30 min of the 10 Hz raw data. (4) eliminating observation data of weak turbulence at night (u* less than 0.1 m/s). The average time period of observation data is 30 minutes, 48 data per day, and the missing data is labeled -6999. Abnormal data caused by instrument drift and other reasons are marked in red. From February 21 to March 13, the data is missing due to problems in memory card and wireless transmission module. Published observations include: date/time Date/Time, wind direction Wdir(°), horizontal wind speed Wnd(m/s), lateral wind speed standard deviation Std_Uy(m/s), ultrasonic virtual temperature Tv(°C), water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar (m/s), stability Z/L (dimensionless), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), sensible heat flux quality identification QA_Hs, latent heat flux quality identification QA_LE, carbon dioxide flux quality identification QA_Fc. The quality identification of sensible heat, latent heat, and carbon dioxide flux is divided into three levels (quality mark 0: (Δst <30, ITC<30); 1: (Δst <100, ITC<100); the rest is 2). The meaning of the data time, such as 0:30 represents an average of 0:00-0:30; the data is stored in *.xls format. For hydrometeorological network or site information, please refer to Li et al. (2013). For observation data processing, please refer to Liu et al. (2011).
2019-09-12
This dataset contains the automatic weather station (AWS) measurements from site No.2 in the flux observation matrix from 3 May to 21 September, 2012. The site (100.35406° E, 38.88695° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1559.09 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (HMP45D; 5 m and 10 m, towards north), air pressure (AV-410BP; 2 m), rain gauge (52203; 10 m), wind speed (010C; 5 m and 10 m, towards north), wind direction (020C; 10 m, towards north), a four-component radiometer (CNR4; 4 m, towards south), two infrared temperature sensors (IRTC3; 4 m, vertically downward), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), soil moisture profile (ECh2o-5; -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), and soil heat flux (HFT3; 3 duplicates with one below the vegetation and the other between plants, 0.06 m). The observations included the following: air temperature and humidity (Ta_5 m and Ta_10 m, RH_5 m and RH_10 m) (℃ and %, respectively), air pressure (press, hpa), precipitation (rain, mm), wind speed (Ws_5 m and Ws_10 m, m/s), wind direction (WD_10 m, °), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m^2), infrared temperature (IRT_1 and IR_2, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2 and Gs_3, W/m^2), soil temperature profile (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, and Ts_100 cm, ℃), and soil moisture profile (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, and Ms_100 cm, %). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.
2019-09-12
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn