Current Browsing: terrestrial


Data set of soil microbe in grassland of Qinghai Tibet Plateau (2017)

Data on soil bacterial diversity of grassland in Qinghai Tibet Plateau. The samples were collected from July to August 2017, including 120 samples of alpine meadow, typical grassland and desert grassland. The soil surface samples were collected and stored in ice bags, and then transported back to the ecological laboratory of the Beijing Qinghai Tibet Plateau Research Institute. The soil DNA was extracted by MO BIO PowerSoil DNA kit. The 16S rRNA gene fragment amplification primers were 515F (5 '- GTGCCAAGCCGGTAA-3') and 806R (5 ´ GGACTACNVGGGTWTCTAAT-3 ´). The amplified fragments were sequenced by Illumina Miseq PE250. The original data is analyzed by Qiime software, and the sequence classification is based on the Silva128 database. Sequences with a similarity of more than 97% are clustered into an operation classification unit (OTU). This data systematically compares the bacterial diversity of soil microorganisms in the Qinghai Tibet Plateau transect, which is of great significance to the study of the distribution of microorganisms in the Qinghai Tibet Plateau.

2022-10-14

Spatial distribution data set of water resource service value in the cryosphere of five river source areas of the Qinghai Tibet Plateau (2005-2010)

Known as the "Asian water tower", the Qinghai Tibet Plateau is the source of many rivers in Southeast Asia. As an important and easily accessible water resource, the runoff provided by it supports the production and life of billions of people around it and the diversity of the ecosystem. The glacier runoff data set in the five river source areas of the Qinghai Tibet Plateau covers the period from 2005 to 2010, with a time resolution of every five years. It covers the source areas of the five major rivers in the Qinghai Tibet Plateau (the source of the Yellow River, the source of the Yangtze River, the source of the Lancang River, the source of the Nujiang River, and the source of the Yarlung Zangbo River). The spatial resolution is 1km. Based on multi-source remote sensing, simulation, statistics, and measured data, GIS methods and ecological economics methods are used, The value of water resources service in the cryosphere in the source area of the river and river is quantified, and all its data are subject to quality control.

2022-09-13

2018-2065 estimation data set of key elements of future water cycle in Arctic main river regions with 10 km resolution

This product provides the monthly runoff, evapotranspiration and soil water of major Arctic river basins in 2018-2065 based on the land surface model Vic. The spatial accuracy is 10km. Major Arctic river basins include Lena, Yenisey, ob, Kolyma, Yukon and Mackenzie basins. According to the rcp2.6 (low emission intensity) and rcp8.5 (high emission intensity) scenario results provided by the ipsl-cm5a-lr model in cmip5 in the fifth assessment report of IPCC, the future climate scenario driving data applicable to the Arctic region of 0.1 ° is obtained through statistical downscaling. Using the calibrated land surface hydrological model Vic on a global scale, based on the future climate scenario driven data of 0.1 °, the monthly time series of runoff, soil water and evapotranspiration of the Arctic River Basin in the middle of this century under future climate change are estimated.

2022-09-01

Domestic high-resolution 2-50m fusion orthophoto validation data set in key rivers and lakes research area of Qinghai Tibet Plateau (2015-2020)

Data content: this data set is the historical archived satellite data of the domestic high score series (GF1 / 2 / 3 / 4) in the key river and lake research areas of the Qinghai Tibet Plateau from 2015 to 2020, which can cover the typical river and lake areas for effective monitoring. The time range of the data is from 2015 to 2020. Data source and processing method: the data are level 1 products. After equalizing radiation correction, the changes affecting the sensors are corrected by the equalizing functions of different detectors. Some data are based on the Landsat 8 images in the same period as the base map, and control points are selected for geometric correction of the images. Then, orthophoto correction is carried out based on DEM data, and band fusion processing is carried out for the corresponding data. Data quality description: the Gaofen series satellites are processed by the China Resources Satellite Application Center. There are raw data received by the satellite ground receiving station of the Chinese Academy of Sciences and processed products at all levels. Among them, level 1a (pre-processing level radiometric correction image product): image data processed by data analysis, uniform radiometric correction, noise removal, MTFC, CCD splicing, band registration, etc; And provide RPC files for satellite direct attitude orbit data production. Refer to the data website of China Resources Satellite Application Center for details. Data application achievements and prospects: the data are domestic high-resolution data with high resolution, which can be used to monitor the changes of the Qinghai Tibet Plateau as a water tower in Asia and the generated images, and test the accuracy of other data in the region

2022-08-29

Surface information of Qinghai-Tibet engineering corridor (2014-2020)

The dataset is the remote sensing image data ofGF-1 satellite in the Qinghai-Tibet engineering corridor obtained by China High Resolution Earth Observation Center. After the fusion processing of multispectral and panchromatic bands, the image data with a spatial resolution of 2 m is obtained. In the process of obtaining ground vegetation information, the classification technology of combining object-oriented computer automatic interpretation and manual interpretation is adopted, The object-oriented classification technology is to collect adjacent pixels as objects to identify the spectral elements of interest, make full use of high-resolution panchromatic and multispectral data space, texture and spectral information to segment and classify, and output high-precision classification results or vectors. In actual operation, the image is automatically extracted by eCognition software. The main processes are image segmentation, information extraction and accuracy evaluation. After verification with the field survey, the overall extraction accuracy is more than 90%.

2022-08-29

Data set of soil freezing depth in the future scenario of Qinghai Tibet Plateau Based on Stefan equation (2007-2017,2046-2065)

Soil freezing depth (SFD) is necessary to evaluate the balance of water resources, surface energy exchange and biogeochemical cycle change in frozen soil area. It is an important indicator of climate change in the cryosphere and is very important to seasonal frozen soil and permafrost. This data is based on Stefan equation, using the daily temperature prediction data and E-factor data of canems2 (rcp45 and rcp85), gfdl-esm2m (rcp26, rcp45, rcp60 and rcp85), hadgem2-es (rcp26, rcp45 and rcp85), ipsl-cm5a-lr (rcp26, rcp45, rcp60 and rcp85), miroc5 (rcp26, rcp45, rcp60 and rcp85) and noresm1-m (rcp26, rcp45, rcp60 and rcp85), The data set of annual average soil freezing depth in the Qinghai Tibet Plateau with a spatial resolution of 0.25 degrees from 2007 to 2065 was obtained.

2022-07-22

Glacier runoff segmentation data set in the five river source areas of the Qinghai Tibet Plateau (1971-2015)

The Qinghai Tibet Plateau is known as the "Asian water tower", and its runoff, as an important and easily accessible water resource, supports the production and life of billions of people around, and supports the diversity of ecosystems. Accurately estimating the runoff of the Qinghai Tibet Plateau and revealing the variation law of runoff are conducive to water resources management and disaster risk avoidance in the plateau and its surrounding areas. The glacier runoff segmentation data set covers the five river source areas of the Qinghai Tibet Plateau from 1971 to 2015, with a time resolution of year by year, covering the five river source areas of the Qinghai Tibet Plateau (the source of the Yellow River, the source of the Yangtze River, the source of the Lancang River, the source of the Nujiang River, and the source of the Yarlung Zangbo River), and the spatial resolution is the watershed. Based on multi-source remote sensing and measured data, it is simulated using the distributed hydrological model vic-cas coupled with the glacier module, The simulation results are verified with the measured data of the station, and all the data are subject to quality control.

2022-07-06

Land cover data for Southeast Asia (2015)

This data is the land cover data at 30m resolution of Southeast Asia in 2015. The data format of the data is NetCDF, and the variable name is "land cover type". The data was obtained by mosaicing and extracting the From-GLC data. Several land cover types, such as snow and ice that do not exist in Southeast Asia were eliminated.The legend were reintegrated to match the new data. The data provide information of 8 land cover types: cropland, forest, grassland, shrub, wetland, water, city and bare land. The overall accuracy of the data is 71% (Gong et al., 2019). The data can provide the land cover information of Southeast Asia for hydrological models and regional climate models.

2022-04-18

Phytoplankton data of lakes in Qinghai Tibet Plateau in 2020

The data is the phytoplankton data of 70 points in 26 lakes in Tibet in 2020. The sampling time is from August to September. The sampling method is the conventional phytoplankton sampling method. 1.5 liters of samples are collected, fixed by Lugo's solution, siphoned and concentrated after static precipitation, and the results are examined by inverted microscope. The data includes the density data of different phytoplankton of 77 species / genus in 10 categories, including diatom, green algae, cyanobacteria, dinoflagellate, naked algae, cryptoalgae, brown algae, brown algae and CHAROPHYTA. This data is original and unprocessed. The unit is piece / L. The data can be used to characterize the composition and abundance of phytoplankton in the open water areas of these lakes, and can also be used to calculate the diversity of phytoplankton communities in these lakes.

2022-04-15