Soil freezing depth (SFD) is necessary to evaluate the balance of water resources, surface energy exchange and biogeochemical cycle change in frozen soil area. It is an important indicator of climate change in the cryosphere and is very important to seasonal frozen soil and permafrost. This data is based on Stefan equation, using the daily temperature prediction data and E-factor data of canems2 (rcp45 and rcp85), gfdl-esm2m (rcp26, rcp45, rcp60 and rcp85), hadgem2-es (rcp26, rcp45 and rcp85), ipsl-cm5a-lr (rcp26, rcp45, rcp60 and rcp85), miroc5 (rcp26, rcp45, rcp60 and rcp85) and noresm1-m (rcp26, rcp45, rcp60 and rcp85), The data set of annual average soil freezing depth in the Qinghai Tibet Plateau with a spatial resolution of 0.25 degrees from 2007 to 2065 was obtained.
2022-07-22
As an important part of the global carbon pool, Arctic permafrost is one of the most sensitive regions to global climate change. The rate of warming in the Arctic is twice the global average, causing rapid changes in Arctic permafrost. The NDVI change data set of different types of permafrost regions in the Northern Hemisphere from 1982 to 2015 has a temporal resolution of every five years, covers the entire Arctic Rim countries, and a spatial resolution of 8km. Based on multi-source remote sensing, simulation, statistics and measured data, GIS method and ecological method are used to quantify the regulation and service function of permafrost in the northern hemisphere to the ecosystem, and all the data are subject to quality control.
2022-07-15
The Qinghai Tibet Plateau is known as the "Asian water tower", and its runoff, as an important and easily accessible water resource, supports the production and life of billions of people around, and supports the diversity of ecosystems. Accurately estimating the runoff of the Qinghai Tibet Plateau and revealing the variation law of runoff are conducive to water resources management and disaster risk avoidance in the plateau and its surrounding areas. The glacier runoff segmentation data set covers the five river source areas of the Qinghai Tibet Plateau from 1971 to 2015, with a time resolution of year by year, covering the five river source areas of the Qinghai Tibet Plateau (the source of the Yellow River, the source of the Yangtze River, the source of the Lancang River, the source of the Nujiang River, and the source of the Yarlung Zangbo River), and the spatial resolution is the watershed. Based on multi-source remote sensing and measured data, it is simulated using the distributed hydrological model vic-cas coupled with the glacier module, The simulation results are verified with the measured data of the station, and all the data are subject to quality control.
2022-07-06
Glacial mass balance is one of the most important glaciological parameters to characterize the accumulation and ablation of glaciers. Glacier mass balance is the link between climate and glacier change, and it is the direct reflection of glacier to the regional climate. Climate change leads to the corresponding changes in the material budget of glaciers, which in turn can lead to changes in the movement characteristics and thermal conditions of glaciers, and then lead to changes in the location, area and ice storage of glaciers. The monitoring method is to set a fixed mark flower pole on the glacier surface and regularly monitor the distance between the glacier surface and the top of the flower pole to calculate the amount of ice and snow melting; In the accumulation area, the snow pits or boreholes are excavated regularly to measure the snow density, analyze the characteristics of snow granular snow additional ice layer, and calculate the snow accumulation; Then, the single point monitoring results are drawn on the large-scale glacier topographic map, and the instantaneous, seasonal (such as winter and summer) and annual mass balance components of the whole glacier are calculated according to the net equilibrium contour method or contour zoning method. The data set is the annual mass balance data of different representative glaciers in the Qinghai Tibet Plateau and Tianshan Mountains, in millimeter water equivalent.
2022-05-06
High resolution pollen records from ice cores can indicate the relationship between seasonal vegetation changes and climate indicators. High resolution sporopollen analysis was carried out on the 32 m ice core sediments of Zuopu ice core in Qinghai Tibet Plateau. 117 SPOROPOLLEN ASSEMBLAGES were obtained. All the data are sporopollen percentage data, which are arranged in order of depth.
2022-04-19
High Mountain Asia is the third largest cryosphere on earth other than the Antarctic and Arctic regions. The large amounts of glaciers and snow over the High Mountain Asia play an important role not only on global water cycle but also on water resources and ecology of the arid regions of central Asia. The snowline, as the lower boundary of the snow covered area at the end of melting season, its altitude changes can directly reflect the changes in snow and glaciers. The snowline altitude provides a possibility to rapidly obtain a proxy for their equilibrium line altitude (ELA) which in turn is an indicator for the glacier mass balance. In this dataset, the daily MODIS snow cover products from 2001 to 2019 are used as the main data source. The cloud removal of the daily MODIS snow cover products was firstly carried out based on the developed cubic spline interpolation cloud-removel method, and snow covered days (SCD) are extracted using the cloud-removed MODIS snow cover products. In addition, the MODIS SCD threshold for estimating perennial snow cover is calibrated using the observed data of glacier annual mass balance and Landsat data at the end of melting season. The altitude value of the snowline at the end of melting season is determined by combining the perennial snow cover area and the hypsometric (area-elevation) curve. Finally, the 30km gridded dataset of snowline altitude in the High Mountain Asia during 2001-2019 is generated. This dataset can provide data support for the study of cryosphere and climate change over the High Mountain Asia.
2022-04-19
The data include K, Na, CA, Mg, F, Cl, so 4 and no 3 in the glacier runoff of zhuxigou, covering most of the inorganic dissolved components. The detection limit is less than 0.01 mg / L and the error is less than 10%; The data can be used to reflect the contribution of chemical weathering processes such as sulfide oxidation, carbonate dissolution and silicate weathering to river solutes in zhuxigou watershed, and then accurately calculate the weathering rates of carbonate and silicate rocks, so as to provide scientific basis for evaluating the impact of glaciation on chemical weathering of rocks and its carbon sink effect.
2022-04-19
Glacier is the supply water source of rivers in the western mountainous area, and it is one of the most basic elements for people to survive and develop industry, agriculture and animal husbandry in the western region. Glaciers are not only valuable fresh water resources, but also the source of serious natural disasters in mountainous areas, such as sudden ice lake outburst flood, glacier debris flow and ice avalanche. Glacier hydrological monitoring is the basis for studying the characteristics of glacier melt water, the replenishment of glacier melt water to rivers, the relationship between glacier surface ablation and runoff, the process of ice runoff and confluence, and the calculation and prediction of floods and debris flows induced by glacier and seasonal snow melt water. Glacial hydrology refers to the water and heat conditions of glacial covered basins (i.e. glacial action areas), that is, the water and heat exchange between glaciers and their surrounding environment, the physical process of water accumulation and flow on the surface, inside and bottom of glaciers, the water balance of glaciers, the replenishment of glacial melt water to rivers, and the impact of water bodies in cold regions on climate change. At present, hydrological monitoring stations are mainly established at the outlet of the river basin to carry out field monitoring《 Glacial water resources of China (1991), hydrology of cold regions of China (2000) and glacial Hydrology (2001) summarize the early studies on glacial hydrology. China has carried out glacier hydrological monitoring on more than 20 glaciers in Tianshan, Karakorum, West Kunlun, Qilian, Tanggula, Nianqing Tanggula, gangrigab, Hengduan and Himalayas. This data set is the monthly runoff data of representative glaciers.
2022-04-19
Under the funding of the first project (Development of Multi-scale Observation and Data Products of Key Cryosphere Parameters) of the National Key Research and Development Program of China-"The Observation and Inversion of Key Parameters of Cryosphere and Polar Environmental Changes", the research group of Zhang, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, developed the snow depth downscaling product in the Qinghai-Tibet Plateau. The snow depth downscaling data set for the Tibetan Plateau is derived from the fusion of snow cover probability dataset and Long-term snow depth dataset in China. The sub-pixel spatio-temporal downscaling algorithm is developed to downscale the original 0.25° snow depth dataset, and the 0.05° daily snow depth product is obtained. By comparing the accuracy evaluation of the snow depth product before and after downscaling, it is found that the root mean square error of the snow depth downscaling product is 0.61 cm less than the original product. The details of the product information of the Downscaling of Snow Depth Dataset for the Tibetan Plateau (2000-2018) are as follows. The projection is longitude and latitude, the spatial resolution is 0.05° (about 5km), and the time is from September 1, 2000 to September 1, 2018. It is a TIF format file. The naming rule is SD_yyyyddd.tif, where yyyy represents year and DDD represents Julian day (001-365). Snow depth (SD), unit: centimeter (cm). The spatial resolution is 0.05°. The time resolution is day by day.
2022-04-18
Glacier is the supply water source of rivers in the western mountainous area, and it is one of the most basic elements for people to survive and develop industry, agriculture and animal husbandry in the western region. Glaciers are not only valuable fresh water resources, but also the source of serious natural disasters in mountainous areas, such as sudden ice lake outburst flood, glacier debris flow and ice avalanche. Glacier hydrological monitoring is the basis for studying the characteristics of glacier melt water, the replenishment of glacier melt water to rivers, the relationship between glacier surface ablation and runoff, the process of ice runoff and confluence, and the calculation and prediction of floods and debris flows induced by glacier and seasonal snow melt water. Glacial hydrology refers to the water and heat conditions of glacial covered basins (i.e. glacial action areas), that is, the water and heat exchange between glaciers and their surrounding environment, the physical process of water accumulation and flow on the surface, inside and bottom of glaciers, the water balance of glaciers, the replenishment of glacial melt water to rivers, and the impact of water bodies in cold regions on climate change. At present, hydrological monitoring stations are mainly established at the outlet of the river basin to carry out field monitoring《 Glacial water resources of China (1991), hydrology of cold regions of China (2000) and glacial Hydrology (2001) summarize the early studies on glacial hydrology. China has carried out glacier hydrological monitoring on more than 20 glaciers in Tianshan, Karakorum, West Kunlun, Qilian, Tanggula, Nianqing Tanggula, gangrigab, Hengduan and Himalayas. This data set is the monthly runoff data of representative glaciers.
2022-04-18
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn