The data set is the meteorological and observational data of hulugou shrub experimental area in the upper reaches of Heihe River, including meteorological data, albedo data and evapotranspiration data under shrubs. 1. Meteorological data: Qilian station longitude: 99 ° 52 ′ E; latitude: 38 ° 15 ′ n; altitude: 3232.3m, scale meteorological data from January 1, 2012 to December 31, 2013. Observation items include: temperature, humidity, vapor pressure, net radiation, four component radiation, etc. The data are daily scale data, and the calculation period is 0:00-24:00 2. Albedo: daily surface albedo data from January 1, 2012 to July 3, 2014, including snow and non snow periods. The measuring instrument is the radiation instrument on the 10m gradient tower in hulugou watershed. Among them, the data from August 4 to October 2, 2012 was missing due to instrument circuit problems, and the rest data quality was good 3. Evapotranspiration: surface evapotranspiration data of Four Typical Shrub Communities in hulugou watershed. The observation period is from July 18 to August 5, 2014, which is the daily scale data. The data include precipitation data, evaporation and infiltration data observed by lysimeter. The data set can be used to analyze the evapotranspiration data of alpine shrubs and forests. The evapotranspiration of grassland under canopy was measured by a small lysimeter with a diameter of 25 cm and a depth of 30 cm. Two lysimeters were set up in each shrub plot, and one lysimeter was set for each shrub in transplanting experiment. The undisturbed undisturbed soil column with the same height as the barrel is placed in the inner bucket, and the outer bucket is buried in the soil. During the embedding, the outer bucket shall be 0.5-1.0 cm higher than the ground, and the outer edge of the inner barrel shall be designed with a rainproof board about 2.0 cm wide to prevent surface runoff from entering the lysimeter. Lysimeter was set up in the nearby meteorological stations to measure grassland evapotranspiration, and a small lysimeter with an inner diameter of 25 cm and a depth of 30 cm was also set up in the sample plot of Picea crassifolia forest to measure the evaporation under the forest. All lysimeters are weighed at 20:00 every day (the electronic balance has a sensing capacity of 1.0 g, which is equivalent to 0.013 mm evaporation). Wind proof treatment should be taken to ensure the accuracy of measurement. Data processing method: evapotranspiration is mainly calculated by mass conservation in lysimeter method. According to the design principle of lysimeter lysimeter, evapotranspiration is mainly determined by the quality difference in two consecutive days. Since it is weighed every day, it is calculated by water balance.
2020-07-31
The data set contains the observation data of thermal diffusion fluid flow meters at the downstream mixed forest station and eupoplar forest station of the hydrometeorological observation network from January 1 to December 31, 2014. La shan au in the study area is located in the Inner Mongolia autonomous region of mesozoic-cenozoic in iminqak, according to the different height and diameter at breast height of iminqak, choose sampling tree installation TDP (Thermal Dissipation SAP flow velocity Probe, Thermal diffusion flow meter), domestic TDP pin type Thermal diffusion stem flow meter, the model for TDP30.The sample sites are TDP1 point and TDP2 point respectively, which are located near the mixed forest station and populus populus station.The height of the sample tree is TDP2 and TDP1 from high to low, and the diameter of the chest is TDP1 and TDP2 from large to small, so as to measure the trunk fluid flow on behalf of the whole area.The installation height of the probe is 1.3 meters and the installation orientation is due east and west of the sample tree. The original observation data of TDP is the temperature difference between probes, which is collected once for 10s and the average output period is 10 minutes.The published data are calculated and processed trunk flow data, including flow rate (cm/h), flux (cm3/h) and daily transpiration (mm/d) per 10 minutes.Firstly, the liquid flow rate and liquid flux were calculated according to the temperature difference between the probes, and then the transpiration Q per unit area of the forest zone was calculated according to the area of Euphrates poplar forest and the distance between trees at the observation points.At the same time, post-processing was carried out on the calculated rate and flux value :(1) data that obviously exceeded the physical significance or the instrument range were removed;(2) the missing data is marked with -6999;Among them, the data of TDP2 was missing due to power supply problems from 1.1-2.8 days, and the data of the third group of probes was missing from 2.8-3.13 days due to the problems of the third group of probes.(3) suspicious data caused by probe fault or other reasons shall be identified in red, and the data confirmed to have problems shall be removed. Please refer to Li et al.(2013) for hydrometeorological network or site information, and Qiao et al.(2015) for observation data processing.
2020-04-06
A small lysimeter was made to simulate the natural conditions and select typical desert plants as the objects to study the water consumption of drought stress treatment. Repeat 3 times for each plant. In 2012, the soil water content was kept at (20 ± 5)% of the field water capacity, and experiments on physiological water demand and water consumption were carried out under stress. In 2013, the soil water content was kept at (10 ± 3)% of the field water capacity, and further experiments on water consumption and water consumption law were carried out under drought stress.
2020-03-12
This data set is the surface evapotranspiration data of Four Typical Shrub Communities in hulugou watershed. The observation period is from July 16 to August 23, 2013, which is the daily scale data. The data content includes precipitation data, evaporation and infiltration data observed by lysimeter. The data set can be used to analyze the evapotranspiration data of alpine shrub and forest. Data quality information: data quality is high, daily evapotranspiration data observation is complete. Data source description: a small lysimeter with an inner diameter of 25 cm and a depth of 30 cm was selected for evapotranspiration under the canopy. Two lysimeters were set up in each sample plot of evapotranspiration under the Bush, and one lysimeter was set up for each kind of Bush in the transplanting experiment. The undisturbed undisturbed soil column with the same height as the barrel shall be placed in the inner barrel during the layout, and the outer barrel shall be buried in the soil. During the embedding, the outer barrel shall be 0.5-1.0 cm higher than the ground, and the outer edge of the inner barrel shall be designed with a 2.0 cm wide rain shield to prevent the surface runoff from entering the lysimeter. Lysimeter was set up in the nearby meteorological station to measure the evapotranspiration of grassland, and a small evapotranspiration meter with an inner diameter of 25 cm and a depth of 30 cm was set up in the Picea koraiensis forest sample plot to measure the evaporation under the forest. All lysimeters shall be weighed on time at 20:00 every day (electronic balance sensing capacity is 1.0 g, which is equivalent to 0.013 mm evaporation). During observation, windproof treatment shall be done to ensure the accuracy of measurement. Data processing method: evapotranspiration is mainly calculated by mass conservation in lysimeter method. According to lysimeter design principle, evapotranspiration is mainly determined by mass difference in two consecutive days. Because it is weighed every day, it is calculated by water balance.
2020-03-11
It is of great significance to carry out the quantitative study on the evapotranspiration of forest vegetation in Qilian Mountain, to correctly understand the hydrological function of the forest ecosystem in Qilian Mountain, to understand the water cycle process and to develop the hydrological model of the watershed, and to make a reasonable forest management plan. Forest evapotranspiration is mainly composed of soil surface evaporation, vegetation transpiration and canopy interception water evaporation. Traditional evapotranspiration research methods can be divided into two categories: actual measurement and estimation. The actual measurement methods include hydrology method, micro meteorology method and plant physiology method; the estimation method is to calculate Evapotranspiration by model, mainly including analysis model and empirical model. However, none of these methods can effectively distinguish forest transpiration from evaporation. The trunk liquid flow method can effectively calculate the transpiration of forest land by measuring the transpiration water consumption of trees. The trunk liquid flow method can effectively calculate the transpiration of forest land by measuring the transpiration water consumption of trees. The transpiration water consumption of Picea crassifolia forest was measured by thermal pulse technique, and the scale was extended to the stand scale to indicate the transpiration water consumption of Picea crassifolia forest.
2020-03-10
The evapotranspiration and soil evapotranspiration of lycium rubra and red sand of small shrubs in typical desert weather were observed by using infrared gas analyzer to measure water vapor flux. The measurement system consists of li-8100 closed-circuit automatic measurement of soil carbon flux (li-cor, USA) and an assimilation box designed and manufactured by Beijing ligotai technology co., LTD. Li-8100 is an instrument produced by li-cor for soil carbon flux measurement. It USES an infrared gas analyzer to measure the concentration of CO2 and H2O.The length, width and height of the assimilation box are all 50cm.The assimilation box is controlled by li-8100. After setting up the measurement parameters, the instrument can run automatically.
2020-03-10
1. Data overview The data set of the base camp integrated environmental observation system is a set of ENVIS (IMKO, Germany) which was installed at the base camp observation point by qilian station.It is stored automatically by ENVIS data mining system. 2. Data content This data set is the scale data from January 1, 2012 to December 31, 2012.Including air temperature 1.5m, humidity 1.5m, air temperature 2.5m, humidity 2.5m, soil moisture 0cm, precipitation, wind speed 1.5m, wind speed 2.5m, wind direction 1.5m, geothermal flux 5cm, total radiation, surface temperature, ground temperature 20cm, ground temperature 40cm, ground temperature 60cm, ground temperature 80cm, ground temperature 120cm, ground temperature 160cm, CO2, air pressure. 3. Space and time scope Geographical coordinates: longitude: 99° 53’e;Latitude: 38°16 'N;Height: 2980.2 m
2020-03-10
Lysimeter is the most effective tool for measuring water consumption per plant, which can provide daily, monthly and seasonal changes of transpiration water consumption per plant. In this project, a lysimeter measurement system for Populus euphratica seedlings is established in the lower reaches of Heihe River, with the observation frequency of 0.5h, mainly including water content changes, infiltration, evapotranspiration, etc.
2020-03-06
Leaf water potential is an important indicator of plant growth. In this project, Populus euphratica and Tamarix were selected in the lower reaches of Heihe River. Wp4c was used for 15 days to measure leaf water potential data before dawn, noon and sunset, which can provide basic data for understanding the growth conditions of desert plants.
2020-03-06
Trunk sap flow is an effective tool for measuring transpiration of a single plant. In this project, the trunk sap flow data of Populus euphratica in the lower reaches of Heihe River was measured by HRM (ICT, Australia) with a frequency of 0.5h. In the growth season of 2012-2013, the installation location is the north and lateral roots (50cm underground depth, 30cm away from the trunk) at the DBH (1.3m).
2020-03-06
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn