The near surface atmospheric forcing and surface state dataset of the Tibetan Plateau was yielded by WRF model, time range: 2000-2010, space range: 25-40 °N, 75-105 °E, time resolution: hourly, space resolution: 10 km, grid number: 150 * 300. There are 33 variables in total, including 11 near surface atmospheric variables: temperature at 2m height on the ground, specific humidity at 2m height on the ground, surface pressure, latitudinal component of 10m wind field on the ground, longitudinal component of 10m wind field on the ground, proportion of solid precipitation, cumulative cumulus convective precipitation, cumulative grid precipitation, downward shortwave radiation flux at the surface, downward length at the surface Wave radiation flux, cumulative potential evaporation. There are 19 surface state variables: soil temperature in each layer, soil moisture in each layer, liquid water content in each layer, heat flux of snow phase change, soil bottom temperature, surface runoff, underground runoff, vegetation proportion, surface heat flux, snow water equivalent, actual snow thickness, snow density, water in the canopy, surface temperature, albedo, background albedo, lower boundary Soil temperature, upward heat flux (sensible heat flux) at the surface and upward water flux (sensible heat flux) at the surface. There are three other variables: longitude, latitude and planetary boundary layer height.
2022-05-17
This dataset contains the automatic weather station (AWS) measurements from Bajitan Gobi station in the flux observation matrix from 13 May to 21 September, 2012. The site (100.30420° E, 38.91496° N) was located in a Gobi surface, which is near Zhangye city, Gansu Province. The elevation is 1562 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity (HMP45AC; 5 m and 10 m, towards north), air pressure (PTB110; 2 m), rain gauge (TE525M; 10 m), wind speed (03001; 5 m and 10 m, towards north), wind direction (03001; 10 m, towards north), a four-component radiometer (CNR1; 6 m, towards south), two infrared temperature sensors (IRTC3; 6 m, vertically downward), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), soil moisture profile (ECh2o-5; -0.02, -0.04, -0.1, -0.2, -0.4, -0.6, and -1.0 m), and soil heat flux (HFT3; 3 duplicates, 0.06 m). The observations included the following: air temperature and humidity (Ta_5 m and Ta_10 m, RH_5 m and RH_10 m) (℃ and %, respectively), air pressure (press, hpa), precipitation (rain, mm), wind speed (Ws_5 m and Ws_10 m, m/s), wind direction (WD_10 m, °), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m^2), infrared temperature (IRT_1 and IR_2, ℃), soil heat flux (Gs_1, Gs_2 and Gs_3, W/m^2), soil temperature profile (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_60 cm, and Ts_100 cm, ℃), and soil moisture profile (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_60 cm, and Ms_100 cm, %). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.
2021-01-26
This dataset contains the flux observation matrix measurements obtained from the automatic weather station (AWS) at the Daman superstation between 10 May and 26 September, 2012. The site (100.37223° E, 38.85551° N) was located in a cropland (maize surface) in the Daman irrigation, which is near Zhangye, Gansu Province. The elevation is 1556.06 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (AV-14TH; 3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 2.5 m), four-component radiometer (PSP&PIR; 12 m, towards south), two infrared temperature sensors (IRTC3; 12 m, vertically downward), photosynthetically active radiation (LI-190SB; 12 m, towards south), a TCAV averaging soil thermocouple probe (TCAV; -0.02, -0.04 m), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (CS616; -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and soil heat flux (HFP01SC; 3 duplicates with one below the vegetation; and the other between plants, -0.06 m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m, m/s), wind direction (WD_3 m, WD_5 m, WD_10 m, WD_15 m, WD_20 m, WD_30 m, and WD_40 m, °), air pressure (press, hpa), precipitation (rain, mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation; W/m^2), infrared temperature (IRT_1 and IR_2, ℃), photosynthetically active radiation (PAR, μmol/ (s m^-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2, and Gs_3, W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm, ℃), and soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm, %). The data processing and quality control steps were as follows. (1) The AWS data were averaged over intervals of 10 min; therefore, there were 144 records per day. The missing data were filled with -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) In this dataset, the time of 0:10 corresponds to the average data for the period between 0:00 and 0:10; the data were stored in *.xlsx format. (5) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.
2021-01-26
Precipitation is one of the elements of meteorological monitoring and a measurement basis of regional precipitation. Precipitation is the only source of water for plants’ survival in mountain areas. Therefore, precipitation is the main link of the forest hydrological cycle. This data only provides precipitation of the Pailugou watershed during the growing season.
2020-07-30
This project use distributed HEIFLOW Ecological hydrology model (Hydrological - Ecological Integrated watershed - scale FLOW model) of heihe river middle and lower reaches of the eco Hydrological process simulation.The model USES the dynamic land use function, and adopts the land use data of the three phases of 2000, 2007 and 2011 provided by hu xiaoli et al. The space-time range and accuracy of simulation are as follows: Simulation period: 2000-2012, of which 2000 is the model warm-up period Analog step size: day by day Simulation space range: the middle and lower reaches of heihe river, model area 90589 square kilometers Spatial accuracy of the simulation: 1km×1km grid was used on both the surface and underground, and there were 90589 hydrological response units on the surface.Underground is divided into 5 layers, each layer 90589 mobile grid The data set of HEIFLOW model simulation results includes the following variables: (1) precipitation (unit: mm/month) (2) observed values of main outbound runoff in the upper reaches of heihe river (unit: m3 / s) (3) evapotranspiration (unit: mm/month) (4) soil infiltration amount (unit: mm/month) (5) surface yield flow (unit: mm/month) (6) shallow groundwater head (unit: m) (7) groundwater evaporation (unit: m3 / month) (8) supply of shallow groundwater (unit: m3 / month) (9) groundwater exposure (unit: m3 / month) (10) river-groundwater exchange (unit: m3 / month) (11) simulated river flow value of four hydrological stations of heihe main stream (gaoya, zhengyi gorge, senmaying, langxin mountain) (unit: cubic meter/second) The first two variables above are model-driven data, and the rest are model simulation quantities.The time range of all variables is 2001-2012, and the time scale is month.The spatial distributed data precision is 1km×1km, and the data format is tif. In the above variables, if the negative value is encountered, it represents the groundwater excretion (such as groundwater evaporation, groundwater exposure, groundwater recharge channel, etc.).If groundwater depth is required, the groundwater head data can be subtracted from the surface elevation data of the model. In some areas, the groundwater head may be higher than the surface, indicating the presence of groundwater exposure. In addition, the dataset provides: Middle and downstream model modeling scope (format:.shp) Surface elevation of the middle and downstream model (in the format of. Tif) All the above data are in the frame of WGS_1984_UTM_Zone_47N. Take heiflow_v1_et_2001m01.tif as an example to illustrate the naming rules of data files: HEIFLOW: model name V1: data set version 1.0 ET: variable name 2001M01: January 2000, where M represents month
2020-07-28
The data set includes meteorological data from the Ngari Desert Observation and Research Station from 2009 to 2017. It includes the following basic meteorological parameters: temperature (1.5 m from the ground, once every half hour, unit: Celsius), relative humidity (1.5 m from the ground, once every half hour, unit: %), wind speed (1.5 m from the ground, once every half hour, unit: m/s), wind direction (1.5 m from the ground, once every half hour, unit: degrees), atmospheric pressure (1.5 m from the ground, once every half hour, unit: hPa), precipitation (once every 24 hours, unit: mm), water vapour pressure (unit: kPa), evaporation (unit: mm), downward shortwave radiation (unit: W/m2), upward shortwave radiation (unit: W/m2), downward longwave radiation (unit: W/m2), upward longwave radiation (unit: W/m2), net radiation (unit: W/m2), surface albedo (unit: %). The temporal resolution of the data is one day. The data were directly downloaded from the Ngari automatic weather station. The precipitation data represent daily precipitation measured by the automatic rain and snow gauge and corrected based on manual observations. The other observation data are the daily mean value of the measurements taken every half hour. Instrument models of different observations: temperature and humidity: HMP45C air temperature and humidity probe; precipitation: T200-B rain and snow gauge sensor; wind speed and direction: Vaisala 05013 wind speed and direction sensor; net radiation: Kipp Zonen NR01 net radiation sensor; atmospheric pressure: Vaisala PTB210 atmospheric pressure sensor; collector model: CR 1000; acquisition interval: 30 minutes. The data table is processed and quality controlled by a particular person based on observation records. Observations and data acquisition are carried out in strict accordance with the instrument operating specifications, and some data with obvious errors are removed when processing the data table.
2020-06-24
This data set is the precipitation characteristic data in the precipitation interception data of alpine shrub in hulugou basin in the upper reaches of Heihe River in 2012. The observation date is from October 2, 2011 to September 24, 2012. The observation contents include precipitation, precipitation duration, precipitation intensity and frequency of throughfall. The observation data are recorded by self recording rain gauge and artificial rain gauge.
2020-03-11
1. Data overview: This data set is the scale artificial evaporation dish and precipitation data of qilian station from January 1, 2013 to December 31, 2013. The artificial evaporator is a 20cm standard evaporator, and the precipitation is a 20cm standard rain gauge. 2. Data content: (1) the evaporation capacity is measured at 20:00 every day with 20 special measuring cups;It is before a day commonly 20 when measure clear water 20 millimeter with special measure cup (original quantity) pour into implement inside, 24 hours hind namely in the same day 20 hour, again measure the water inside implement (allowance), its reduce quantity is evaporation quantity.Namely: evaporation = original quantity - residual quantity.If there is precipitation between 20:00 of the previous day and 20:00 of the same day, the calculation formula is: evaporation = original quantity + precipitation - residual quantity. (2) precipitation is generally observed in two stages, namely once at 8 o 'clock and once at 20 o 'clock each day. In the rainy season, observation periods are increased, and additional measurements are needed when the rainfall is large.The daily rainfall is divided into 8 a.m. of each day, and the precipitation from 8 a.m. to 8 a.m. of the next day is the precipitation of the current day.If it is rain, measure it with 20 special measuring cups. When it snows, only use the outer tube as snow bearing equipment, and then weigh it with an electronic balance (shenyang longteng es30k-12 type electronic balance, the minimum sensible amount is 0.2g). 3. Space and time range: Geographical coordinates: longitude: 99° 53’e; Latitude: 38°16 'N; Height: 2981.0 m
2020-03-11
1. Data overview: This data set is the scale artificial evaporation dish and precipitation data of qilian station from January 1, 2012 to December 31, 2012. The artificial evaporator is a 20cm standard evaporator, and the precipitation is a 20cm standard rain gauge. 2. Data content: (1) the evaporation capacity is measured at 20:00 every day with 20 special measuring cups;It is before a day commonly 20 when measure clear water 20 millimeter with special measure cup (original quantity) pour into implement inside, 24 hours hind namely in the same day 20 hour, again measure the water inside implement (allowance), its reduce quantity is evaporation quantity.Namely: evaporation = original quantity - residual quantity.If there is precipitation between 20:00 of the previous day and 20:00 of the same day, the calculation formula is: evaporation = original quantity + precipitation - residual quantity. (2) precipitation is generally observed in two stages, namely once at 8 o 'clock and once at 20 o 'clock each day. In the rainy season, observation periods are increased, and additional measurements are needed when the rainfall is large.The daily rainfall is divided into 8 a.m. of each day, and the precipitation from 8 a.m. to 8 a.m. of the next day is the precipitation of the current day.If it is rain, measure it with 20 special measuring cups. When it snows, only use the outer tube as snow bearing equipment, and then weigh it with an electronic balance (shenyang longteng es30k-12 type electronic balance, the minimum sensible amount is 0.2g). 3. Space and time range: Geographical coordinates: longitude: 99° 53’e;Latitude: 38°16 'N;Height: 2981.0 m
2020-03-11
Forest canopy interception refers to the hydrological process in which part of water is intercepted and received by forest canopy and redistributed to precipitation in the process of precipitation. The data include precipitation, throughfall, canopy interception and interception rate, which are mainly used to provide data support for understanding the eco hydrological process of Picea crassifolia forest.
2020-03-10
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn