Current Browsing: glaciers


Moraine distributions in the upstream of the Heihe River (2013-2014)

From 2013 to 2014, the Glacial Geomorphology of the upper reaches of Heihe River in the late Quaternary was investigated and sampled. Based on the field investigation and remote sensing image, the distribution map of moraine at different levels near the ridge of the upper reaches of the Bailang river was obtained.

2020-07-30

Basic datasets of the Tibetan Plateau in Chinese Cryospheric Information System

Chinese Cryospheric Information System is a comprehensive information system for the management and analysis of Chinese Cryospheric data. The establishment of Chinese Cryospheric Information System is to meet the needs of earth system science, to provide parameters and validation data for the development of response and feedback model of frozen soil, glacier and snow cover to global change under GIS framework; on the other hand, it is to systemically sort out and rescue valuable cryospheric data, to provide a scientific, efficient and safe management and division for it Analysis tools. The basic datasets of the Tibet Plateau mainly takes the Tibetan Plateau as the research region, ranging from longitude 70 -- 105 ° east and latitude 20 -- 40 ° north, containing the following types of data: 1. Cryosphere data. Includes: Permafrost type (Frozengd), (Fromap); Snow depth distribution (Snowdpt) Quatgla (Quatgla) 2. Natural environment and resources. Includes: Terrain: elevation, elevation zoning, slope, slope direction (DEM); Hydrology: surface water (Stram_line), (Lake); Basic geology: Quatgeo, Hydrogeo; Surface properties: Vegetat; 4. Climate data: temperature, surface temperature, and precipitation. 3. Socio-economic resources (Stations) : distribution of meteorological Stations on the Tibetan Plateau and it surrounding areas. 4. Response model of plateau permafrost to global change (named "Fgmodel"): permafrost distribution data in 2009, 2049 and 2099 were projected. Please refer to the following documents (in Chinese): "Design of Chinese Cryospheric Information System.doc", "Datasheet of Chinese Cryospheric Information System.DOC", "Database of the Tibetan Plateau.DOC" and "Database of the Tibetan Plateau 2.DOC".

2020-06-23

Glacier velocity of the Central Karakoram (Version 1.0) (1999-2003)

Under the background of global warming, mountain glaciers worldwide are facing strong ablation and retreat, but from existing field observations, it is found that most of the glaciers in the Karakorum region remain stable or are advancing, which is called the "Karakorum anomaly". Glacier surface velocity is an important parameter for studying glacier dynamics and mass balance. Studying the temporal and spatial variation characteristics of glacier velocity in central Karakorum is significant for understanding the dynamic characteristics of the glacier in this region and its response to climate change. Four pairs of Landsat 7 ETM+ images acquired in 1999 to 2003 (images acquired on 1999.7.16, 2000.6.16, 2001.7.21, 2002.8.9, 2002.4.19, 2003.3.21) were selected; using the panchromatic band with a resolution of 15 m, each pair of images was accurately registered, and then cross-correlation calculations were then performed on each image pair after registration to obtain the surface velocity of the glacier in the central Karakorum region from 1999 to 2003. Due to the lack of velocity observation data in the study area, the accuracy of the ice flow results is estimated using the offset value of the stable region, and the surface velocity error of the glacier is approximately ±7 m/year. The glacier velocity data dates are from 1999 to 2003, with a temporal resolution of one year. They cover the central Karakorum region, with a spatial resolution of 30 m. The data are stored as a GeoTIFF file every year. For details regarding the data, please refer to the data description.

2020-04-29

1:4 million map of the Glaciers, Frozen Ground and Deserts in China (2006)

The compilation basis of frozen soil map includes: (1) frozen soil field survey, exploration and measurement data; (2) aerial photo and satellite image interpretation; (3) topo300 1km resolution ground elevation data; (4) temperature and ground temperature data. Among them, the distribution of permafrost in the Qinghai Tibet Plateau adopts the research results of nanzhuo Tong et al. (2002). Using the measured annual average ground temperature data of 76 boreholes along the Qinghai Tibet highway, regression statistical analysis is carried out to obtain the relationship between the annual average ground temperature and latitude, elevation, and based on this relationship, combined with the gtopo30 elevation data (developed under the leadership of the center for earth resources observation and science and technology, USGS) Global 1 km DEM data) to simulate the annual mean ground temperature distribution over the whole Tibetan Plateau. Taking the annual average ground temperature of 0.5 ℃ as the boundary between permafrost and seasonal permafrost, the boundary between discontinuous Permafrost on the plateau and island Permafrost on the plateau is delimited by referring to the map of ice and snow permafrost in China (1:4 million) (Shi Yafeng et al., 1988); in addition, the division map of Permafrost on the big and small Xing'an Mountains in the Northeast (Guo Dongxin et al., 1981), the distribution map of permafrost and underground ice around the Arctic (b According to rown et al. 1997) and the latest field survey data, the Permafrost Boundary in Northeast China has been revised; the Permafrost Boundary in Northwest mountains mostly uses the boundary defined in the map of ice and snow permafrost in China (1:4 million) (Shi Yafeng et al., 1988). According to the data, the area of permafrost in China is about 1.75 × 106km2, accounting for about 18.25% of China's territory. Among them, alpine permafrost is 0.29 × 106km2, accounting for about 3.03% of China's territory. For more information, please refer to the specification of "1:4 million map of glacial and frozen deserts in China" (Institute of environment and Engineering in cold and dry areas, Chinese Academy of Sciences, 2006)

2020-04-01