Current Browsing: Winds


HiWATER: The multi-scale Observation experiment on evapotranspiration over heterogeneous land surfaces (MUSOEXE-12)-Dataset of flux observation matrix (No.16 eddy covariance system) (2012)

This dataset contains the flux measurements from site No.16 eddy covariance system (EC) in the flux observation matrix from 6 June to 17 September, 2012. The site (100.36411° E, 38.84931° N) was located in a cropland (maize surface) in Daman irrigation district, which is near Zhangye, Gansu Province. The elevation is 1564.31 m. The EC was installed at a height of 4.9 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (Gill&Li7500) was 0.2 m. Raw data acquired at 10 Hz were processed using the Eddypro post-processing software (Li-Cor Company, http://www.licor.com/env/products/ eddy_covariance/software.html), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, angle of attack correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

2020-06-29

HiWATER: The multi-scale observation experiment on evapotranspiration over heterogeneous land surfaces 2012 (MUSOEXE-12)-dataset of flux observation matrix (No.7 eddy covariance system )

This dataset contains the flux measurements from site No.7 eddy covariance system (EC) in the flux observation matrix from 29 May to 18 September, 2012. The site (100.36521° E, 38.87676° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1556.39 m. The EC was installed at a height of 3.8 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. Raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.

2020-06-29

Meteorological data of the integrated observation and research station of Ngari for desert environment (2009-2017)

The data set includes meteorological data from the Ngari Desert Observation and Research Station from 2009 to 2017. It includes the following basic meteorological parameters: temperature (1.5 m from the ground, once every half hour, unit: Celsius), relative humidity (1.5 m from the ground, once every half hour, unit: %), wind speed (1.5 m from the ground, once every half hour, unit: m/s), wind direction (1.5 m from the ground, once every half hour, unit: degrees), atmospheric pressure (1.5 m from the ground, once every half hour, unit: hPa), precipitation (once every 24 hours, unit: mm), water vapour pressure (unit: kPa), evaporation (unit: mm), downward shortwave radiation (unit: W/m2), upward shortwave radiation (unit: W/m2), downward longwave radiation (unit: W/m2), upward longwave radiation (unit: W/m2), net radiation (unit: W/m2), surface albedo (unit: %). The temporal resolution of the data is one day. The data were directly downloaded from the Ngari automatic weather station. The precipitation data represent daily precipitation measured by the automatic rain and snow gauge and corrected based on manual observations. The other observation data are the daily mean value of the measurements taken every half hour. Instrument models of different observations: temperature and humidity: HMP45C air temperature and humidity probe; precipitation: T200-B rain and snow gauge sensor; wind speed and direction: Vaisala 05013 wind speed and direction sensor; net radiation: Kipp Zonen NR01 net radiation sensor; atmospheric pressure: Vaisala PTB210 atmospheric pressure sensor; collector model: CR 1000; acquisition interval: 30 minutes. The data table is processed and quality controlled by a particular person based on observation records. Observations and data acquisition are carried out in strict accordance with the instrument operating specifications, and some data with obvious errors are removed when processing the data table.

2020-06-24

Aeolian observation data in the Ulanbh Desert and in the Kubuqi desert (2011-2012)

I. overview The data set includes wind and sand activity data of Ulanbuh Desert and Kubuqi Desert along the upper Yellow River from April to May 2011 and April 2012, mainly including wind speed profile, surface roughness, wind-sand flow structure, sand transport rate data under different vegetation coverage and different parts of sand dunes. II. Data Processing Instructions The wind speed and direction are observed by 014A wind speed sensor 024A wind direction sensor and CR200 data acquisition instrument produced by MetOne company, and the sediment transport amount is observed by stepped sediment collection instrument. III. Description of Data Content The data are stored in EXCEL table, mainly including wind speed profile, surface roughness, wind-sand flow structure and sand transport rate data under different vegetation coverage. IV. Data Usage Instructions This paper evaluates the sandstorm hazards along the Yellow River, estimates the amount of sandstorm entering the Yellow River in the upper reaches of the Yellow River, and provides data support for the establishment of an early warning system for sandstorm hazards in the region.

2020-03-29

Annual average monthly wind speed in Heihe river basin (1961-2010)

The station data information of 21 regular meteorological observation stations in Heihe River Basin and surrounding areas and 13 national benchmark stations around Heihe River provided by Heihe plan data management center are used to make statistics and collation of daily wind speed and calculate the monthly wind speed data of 1961-2010 for many years. The spatial stability analysis is carried out to calculate the variation coefficient. If the variation coefficient is greater than 100%, the geographical weighted regression is used to calculate the relationship between the station and the geographical terrain factors, and the monthly wind speed distribution trend is obtained; if the variation coefficient is less than or equal to 100%, the common least square regression is used to calculate the relationship between the station wind speed value and the geographical terrain factors (longitude and latitude, elevation, slope, aspect, etc.) The trend of monthly wind speed distribution is obtained, and the residual after removing the trend is fitted and corrected by HASM (high accuracy surface modeling method). Finally, the monthly average wind speed distribution of the Heihe River Basin in 1961-2010 is obtained by adding the trend surface results and the residual correction results. Time resolution: monthly average wind speed for many years from 1961 to 2010. Spatial resolution: 500M.

2020-03-28

Dataset of automatic meteorological observations at the Sub-Basin in Qilian Mountain (2011-2012)

The data set contains observation data from the Tianlaochi small watershed automatic weather station. The latitude and longitude of the station are 38.43N, 99.93E, and the altitude is 3100m. Observed items are time, average wind speed (m/s), maximum wind speed (m/s), 40-60cm soil moisture, 0-20 soil moisture, 20-40 soil moisture, air pressure, PAR, air temperature, relative humidity, and dew point temperature , Solar radiation, total precipitation, 20-40 soil temperature, 0-20 soil temperature, 40-60 soil temperature. The observation period is from May 25, 2011 to September 11, 2012, and all parameter data are compiled on a daily scale.

2020-03-13

Eddy covariance data in Hulugou sub-basin of alpine Heihe River (2012)

1. Data overview: This data set is eddy covariance Flux data of qilian station from January 1, 2012 to December 31, 2012. 2. Data content: The observation items are: horizontal wind speed Ux (m/s), horizontal wind speed Uy (m/s), vertical wind speed Uz (m/s), ultrasonic temperature Ts (Celsius), co2 concentration co2 (mg/m^3), water vapor concentration h2o (g/m^3), pressure press (KPa), etc.The data is 30min Flux data. 3. Space and time range: Geographical coordinates: longitude: 99° 52’e;Latitude: 38°15 'N;Height: 3232.3 m

2020-03-11

WATER: Dataset of observations at the regional meteorological stations of Zhangye (2008-2009)

This data set contains the meteorological data of 45 regional stations in Zhangye area of Gansu Province from 2008 to 2009. There are two factors (air temperature and rainfall): Dongdashan forest farm and Anyang in Ganzhou district; Horseshoe temple in Sunan County; Longqu in Zhangye; Junma farm in Shandan; Mawei Lake in Gaotai; Banqiao in Linze. The observation of the three elements (wind direction, air temperature and rainfall) are: the Imperial City, the big river and recreation in Sunan County. The observation of the four elements (wind direction, wind speed, air temperature and rainfall) are: Tiancheng, Baba, luotuocheng, Xinba and Nanhua in Gaotai County; Pingchuan, Xinhua, nijiaying and yinggezui in Linze County; Jing'an, hongshawo forest farm, pingpingpingbao, Daman, alkali beach and shigangdun in Ganzhou district; Gushanzi, Longshoushan forest farm, Laojun, Liqiao, dongle, Junma first farm in Shandan County Liudun and junmachang in Qilian Mountain; Liuba, Sanbao, zhaizhaizhaizi, shuangshusi, haichaoba and dadonggan in Minle County; Xishui in Sunan County. The observation of the five factors (relative humidity, wind direction, wind speed, air temperature and rainfall) are: Yanzhishan forest farm in Shandan County; Minghua in Sunan County. The observation of the five factors (air pressure, wind direction, wind speed, air temperature and rainfall) are: Yanzhishan forest farm in Shandan County; Minghua in Sunan County. The six elements of observation (air pressure, humidity, wind direction, wind speed, air temperature and rainfall) are as follows: East top of dacha, dacha and crescent platform in Sunan County. The data recording unit shall comply with the ground meteorological observation specifications, and the data storage shall be expressed as an integer, as follows: ten times record of temperature expansion; ten times record of precipitation expansion; ten times record of wind speed expansion. The data format is ASCII text file.

2020-03-10

WATER: Dataset of automatic meteorological observations at the national observatory on climatology at Zhangye (2008-2009)

This data set contains the observation data of Zhangye National Climate Observatory from 2008 to 2009. The station is located in Zhangye, Gansu Province, with longitude and latitude of 100 ° 17 ′ e, 39 ° 05 ′ N and altitude of 1456m. The observation items include: atmospheric wind temperature and humidity gradient observation (2cm, 4cm, 10cm, 20m and 30m), wind direction, air pressure, photosynthesis effective radiation, precipitation, radiation four components, surface temperature, multi-layer soil temperature (5cm, 10cm, 15cm, 20cm and 40cm), soil moisture (10cm, 20cm, 50cm, 100cm and 180cm) and soil heat flux (5cm, 10cm and 15cm). Please refer to the instruction document published with the data for specific header and other information.

2020-03-10

WATER: Dataset of the automatic meteorological observations at the Linze inland river basin comprehensive research station (2008-2009)

This data set includes the observation data of the automatic meteorological station from January 2008 to September 2009 in Linze Inland River Basin Comprehensive station. The station is located in Linze County, Zhangye City, Gansu Province, with longitude and latitude of 100 ° 08 ′ e, 39 ° 21 ′ N and altitude of 1382m. The observation items include: atmospheric temperature and humidity gradient observation (1.5m and 3.0m), wind speed (2.2m and 3.7m), wind direction, air pressure, precipitation, net radiation and total radiation, carbon dioxide (2.8m and 3.5m), soil tension, multi-layer soil temperature (20cm, 40cm, 60cm, 80cm, 120cm and 160cm) and soil heat flux (5cm, 10cm and 15cm). Please refer to the instruction document published with the data for specific header and other information.

2020-03-10