Current Browsing: evapotranspiration


Dataset of ground truth land surface evapotranspiration at the satellite pixel scale in the Heihe River Basin (from multi-station observations to satellite pixel scale) Version 1.0

Surface evapotranspiration (ET) is an important link of water cycle and energy transmission in the earth system. The accurate acquisition of ET is helpful to the study of global climate change, crop yield estimation, drought monitoring, and has important guiding significance for regional and even global water resources planning and management. With the development of remote sensing technology, remote sensing estimation of surface evapotranspiration has become an effective way to obtain regional and global evapotranspiration. At present, a variety of low and medium resolution surface evapotranspiration products have been produced and released in business. However, there are still many uncertainties in the model mechanism, input data, parameterization scheme of remote sensing estimation of surface evapotranspiration model. Therefore, it is necessary to use the real method. The accuracy of remote sensing estimation of evapotranspiration products was quantitatively evaluated by sex test. However, in the process of authenticity test, there is a problem of spatial scale mismatch between the remote sensing estimation value of surface evapotranspiration and the site observation value, so the key is to obtain the relative truth value of satellite pixel scale surface evapotranspiration. Based on the flux observation matrix of "multi-scale observation experiment of non-uniform underlying surface evaporation" in the middle reaches of Heihe River Basin from June to September 2012, the stations 4 (Village), 5 (corn), 6 (corn), 7 (corn), 8 (corn), 11 (corn), 12 (corn), 13 (corn), 14 (corn), 15 (corn), 17 (orchard) and the lower reaches of January to December 2014 Oasis Populus euphratica forest station (Populus euphratica forest), mixed forest station (Tamarix / Populus euphratica), bare land station (bare land), farmland station (melon), sidaoqiao station (Tamarix) observation data (automatic meteorological station, eddy correlator, large aperture scintillation meter, etc.) are used as auxiliary data, and the high-resolution remote sensing data (surface temperature, vegetation index, net radiation, etc.) are used as auxiliary data. See Fig. 1 for the distribution map. Considering the land Through direct test and cross test, six scale expansion methods (area weight method, scale expansion method based on Priestley Taylor formula, unequal weight surface to surface regression Kriging method, artificial neural network, random forest, depth belief network) were compared and analyzed, and finally a comprehensive method (on the underlying surface) was optimized. The area weight method is used when the underlying surface is moderately inhomogeneous; the unequal weight surface to surface regression Kriging method is used when the underlying surface is moderately inhomogeneous; the random forest method is used when the underlying surface is highly inhomogeneous) to obtain the relative true value (spatial resolution of 1km) of the surface evapotranspiration pixel scale of MODIS satellite transit instantaneous / day in the middle and lower reaches of the flux observation matrix area respectively, and to observe through the scintillation with large aperture. The results show that the overall accuracy of the data set is good. The average absolute percentage error (MAPE) of the pixel scale relative truth instantaneous and day-to-day is 2.6% and 4.5% for the midstream satellite, and 9.7% and 12.7% for the downstream satellite, respectively. It can be used to verify other remote sensing products. The evapotranspiration data of the pixel can not only solve the problem of spatial mismatch between the remote sensing estimation value and the station observation value, but also represent the uncertainty of the verification process. For all site information and scale expansion methods, please refer to Li et al. (2018) and Liu et al. (2016), and for observation data processing, please refer to Liu et al. (2016).

2022-06-06

Data set of simulation results of key hydrological variables in Zhangye basin of Heihe River Basin (1990-2012)

This project is based on the gsflow model of USGS to simulate the surface groundwater coupling in Zhangye basin in the middle reaches of Heihe River. The space-time range and accuracy of the simulation are as follows: Simulation period: 1990-2012; Simulation step: day by day; The spatial scope of simulation: Zhangye basin; The spatial accuracy of simulation: the underground part is 1km × 1km grid (5 layers, the total number of grids in each layer is 150 × 172 = 25800, among which the active grid 9106); the surface part is based on the hydrological response unit (HRU) (588 in total, each HRU covers an area of several square kilometers to dozens of square kilometers). The data include: surface infiltration, actual evapotranspiration, average soil moisture content, surface groundwater exchange, shallow groundwater level, simulated daily flow of Zhengyi gorge, simulated monthly flow of Zhengyi gorge, groundwater extraction and river diversion

2021-01-12

Monthly evapotranspiration dataset with 1 km spatial resolution over the Heihe River Basin Version 2.0 (2000-2013)

ET (ET) monitoring is crucial to agricultural water resource management, regional water resource utilization planning and socio-economic sustainable development.The limitations of traditional ET monitoring methods mainly lie in that they cannot observe a large area at the same time and can only be limited to observation points. Therefore, the cost of personnel and equipment is relatively high, and they can neither provide surface ET data, nor provide ET data of different land use types and crop types. Quantitative monitoring of ET can be achieved by using remote sensing. The characteristics of remote sensing information are that it can not only reflect the macroscopic structure characteristics of the earth surface, but also reflect the microscopic local differences. Version 2.0 (second edition) of the surface evapotranspiration data set of the heihe river basin from 2000 to 2013 is based on multi-source remote sensing data and the latest ETWatch model is adopted to estimate the raster image data. Its temporal resolution is monthly scale and the spatial resolution is 1km scale. The data covers the whole basin in millimeters.Data types include monthly, quarterly, and annual data. The projection information of the data is as follows: Albers equal-area cone projection, Central longitude: 110 degrees, First secant: 25 degrees, Second secant: 47 degrees, Coordinates by west: 4000000 meter. File naming rules are as follows: Monthly cumulative ET value file name: heihe-1km_2013m01_eta.tif Heihe represents the heihe river basin, 1km represents the resolution of 1km, 2013 represents the year of 2013, m01 represents the month of January, eta represents the actual evapotranspiration data, and tif represents the data in tif format. Name of quarterly cumulative ET value file: heihe-1km_2013s01_eta.tif Heihe refers to heihe river basin, 1km refers to the resolution of 1km, 2013 refers to 2013, s01 refers to january-march, is the first quarter, eta refers to the actual evapotranspiration data, and tif refers to the data in tif format. Annual cumulative value file name: heihe-1km_2013y_eta.tif Among them, heihe represents heihe river basin, 1km represents the resolution of 1km, 2013 represents the year of 2013, y represents the year, eta represents the actual evapotranspiration data, and tif represents the data in tif format.

2020-08-26

Meteorological, albedo and evapotranspiration data set of hulugou shrub experimental area in the upper reaches of Heihe River (2012-2014)

The data set is the meteorological and observational data of hulugou shrub experimental area in the upper reaches of Heihe River, including meteorological data, albedo data and evapotranspiration data under shrubs. 1. Meteorological data: Qilian station longitude: 99 ° 52 ′ E; latitude: 38 ° 15 ′ n; altitude: 3232.3m, scale meteorological data from January 1, 2012 to December 31, 2013. Observation items include: temperature, humidity, vapor pressure, net radiation, four component radiation, etc. The data are daily scale data, and the calculation period is 0:00-24:00 2. Albedo: daily surface albedo data from January 1, 2012 to July 3, 2014, including snow and non snow periods. The measuring instrument is the radiation instrument on the 10m gradient tower in hulugou watershed. Among them, the data from August 4 to October 2, 2012 was missing due to instrument circuit problems, and the rest data quality was good 3. Evapotranspiration: surface evapotranspiration data of Four Typical Shrub Communities in hulugou watershed. The observation period is from July 18 to August 5, 2014, which is the daily scale data. The data include precipitation data, evaporation and infiltration data observed by lysimeter. The data set can be used to analyze the evapotranspiration data of alpine shrubs and forests. The evapotranspiration of grassland under canopy was measured by a small lysimeter with a diameter of 25 cm and a depth of 30 cm. Two lysimeters were set up in each shrub plot, and one lysimeter was set for each shrub in transplanting experiment. The undisturbed undisturbed soil column with the same height as the barrel is placed in the inner bucket, and the outer bucket is buried in the soil. During the embedding, the outer bucket shall be 0.5-1.0 cm higher than the ground, and the outer edge of the inner barrel shall be designed with a rainproof board about 2.0 cm wide to prevent surface runoff from entering the lysimeter. Lysimeter was set up in the nearby meteorological stations to measure grassland evapotranspiration, and a small lysimeter with an inner diameter of 25 cm and a depth of 30 cm was also set up in the sample plot of Picea crassifolia forest to measure the evaporation under the forest. All lysimeters are weighed at 20:00 every day (the electronic balance has a sensing capacity of 1.0 g, which is equivalent to 0.013 mm evaporation). Wind proof treatment should be taken to ensure the accuracy of measurement. Data processing method: evapotranspiration is mainly calculated by mass conservation in lysimeter method. According to the design principle of lysimeter lysimeter, evapotranspiration is mainly determined by the quality difference in two consecutive days. Since it is weighed every day, it is calculated by water balance.

2020-07-31

Simulation results of eco hydrological model in the middle and lower reaches of Heihe river v1.0 (2001-2012)

This project use distributed HEIFLOW Ecological hydrology model (Hydrological - Ecological Integrated watershed - scale FLOW model) of heihe river middle and lower reaches of the eco Hydrological process simulation.The model USES the dynamic land use function, and adopts the land use data of the three phases of 2000, 2007 and 2011 provided by hu xiaoli et al. The space-time range and accuracy of simulation are as follows: Simulation period: 2000-2012, of which 2000 is the model warm-up period Analog step size: day by day Simulation space range: the middle and lower reaches of heihe river, model area 90589 square kilometers Spatial accuracy of the simulation: 1km×1km grid was used on both the surface and underground, and there were 90589 hydrological response units on the surface.Underground is divided into 5 layers, each layer 90589 mobile grid The data set of HEIFLOW model simulation results includes the following variables: (1) precipitation (unit: mm/month) (2) observed values of main outbound runoff in the upper reaches of heihe river (unit: m3 / s) (3) evapotranspiration (unit: mm/month) (4) soil infiltration amount (unit: mm/month) (5) surface yield flow (unit: mm/month) (6) shallow groundwater head (unit: m) (7) groundwater evaporation (unit: m3 / month) (8) supply of shallow groundwater (unit: m3 / month) (9) groundwater exposure (unit: m3 / month) (10) river-groundwater exchange (unit: m3 / month) (11) simulated river flow value of four hydrological stations of heihe main stream (gaoya, zhengyi gorge, senmaying, langxin mountain) (unit: cubic meter/second) The first two variables above are model-driven data, and the rest are model simulation quantities.The time range of all variables is 2001-2012, and the time scale is month.The spatial distributed data precision is 1km×1km, and the data format is tif. In the above variables, if the negative value is encountered, it represents the groundwater excretion (such as groundwater evaporation, groundwater exposure, groundwater recharge channel, etc.).If groundwater depth is required, the groundwater head data can be subtracted from the surface elevation data of the model. In some areas, the groundwater head may be higher than the surface, indicating the presence of groundwater exposure. In addition, the dataset provides: Middle and downstream model modeling scope (format:.shp) Surface elevation of the middle and downstream model (in the format of. Tif) All the above data are in the frame of WGS_1984_UTM_Zone_47N. Take heiflow_v1_et_2001m01.tif as an example to illustrate the naming rules of data files: HEIFLOW: model name V1: data set version 1.0 ET: variable name 2001M01: January 2000, where M represents month

2020-07-28

HiWATER:Dataset of Hydrometeorological observation network (Thermal Dissipation sap flow velocity Probe-2014)

The data set contains the observation data of thermal diffusion fluid flow meters at the downstream mixed forest station and eupoplar forest station of the hydrometeorological observation network from January 1 to December 31, 2014. La shan au in the study area is located in the Inner Mongolia autonomous region of mesozoic-cenozoic in iminqak, according to the different height and diameter at breast height of iminqak, choose sampling tree installation TDP (Thermal Dissipation SAP flow velocity Probe, Thermal diffusion flow meter), domestic TDP pin type Thermal diffusion stem flow meter, the model for TDP30.The sample sites are TDP1 point and TDP2 point respectively, which are located near the mixed forest station and populus populus station.The height of the sample tree is TDP2 and TDP1 from high to low, and the diameter of the chest is TDP1 and TDP2 from large to small, so as to measure the trunk fluid flow on behalf of the whole area.The installation height of the probe is 1.3 meters and the installation orientation is due east and west of the sample tree. The original observation data of TDP is the temperature difference between probes, which is collected once for 10s and the average output period is 10 minutes.The published data are calculated and processed trunk flow data, including flow rate (cm/h), flux (cm3/h) and daily transpiration (mm/d) per 10 minutes.Firstly, the liquid flow rate and liquid flux were calculated according to the temperature difference between the probes, and then the transpiration Q per unit area of the forest zone was calculated according to the area of Euphrates poplar forest and the distance between trees at the observation points.At the same time, post-processing was carried out on the calculated rate and flux value :(1) data that obviously exceeded the physical significance or the instrument range were removed;(2) the missing data is marked with -6999;Among them, the data of TDP2 was missing due to power supply problems from 1.1-2.8 days, and the data of the third group of probes was missing from 2.8-3.13 days due to the problems of the third group of probes.(3) suspicious data caused by probe fault or other reasons shall be identified in red, and the data confirmed to have problems shall be removed. Please refer to Li et al.(2013) for hydrometeorological network or site information, and Qiao et al.(2015) for observation data processing.

2020-04-06

The experimental data of water consumption in drought stress of desert plants (2013)

A small lysimeter was made to simulate the natural conditions and select typical desert plants as the objects to study the water consumption of drought stress treatment. Repeat 3 times for each plant. In 2012, the soil water content was kept at (20 ± 5)% of the field water capacity, and experiments on physiological water demand and water consumption were carried out under stress. In 2013, the soil water content was kept at (10 ± 3)% of the field water capacity, and further experiments on water consumption and water consumption law were carried out under drought stress.

2020-03-12

Evaporation data under alpine shrubs in Hulu watershed (2013)

This data set is the surface evapotranspiration data of Four Typical Shrub Communities in hulugou watershed. The observation period is from July 16 to August 23, 2013, which is the daily scale data. The data content includes precipitation data, evaporation and infiltration data observed by lysimeter. The data set can be used to analyze the evapotranspiration data of alpine shrub and forest. Data quality information: data quality is high, daily evapotranspiration data observation is complete. Data source description: a small lysimeter with an inner diameter of 25 cm and a depth of 30 cm was selected for evapotranspiration under the canopy. Two lysimeters were set up in each sample plot of evapotranspiration under the Bush, and one lysimeter was set up for each kind of Bush in the transplanting experiment. The undisturbed undisturbed soil column with the same height as the barrel shall be placed in the inner barrel during the layout, and the outer barrel shall be buried in the soil. During the embedding, the outer barrel shall be 0.5-1.0 cm higher than the ground, and the outer edge of the inner barrel shall be designed with a 2.0 cm wide rain shield to prevent the surface runoff from entering the lysimeter. Lysimeter was set up in the nearby meteorological station to measure the evapotranspiration of grassland, and a small evapotranspiration meter with an inner diameter of 25 cm and a depth of 30 cm was set up in the Picea koraiensis forest sample plot to measure the evaporation under the forest. All lysimeters shall be weighed on time at 20:00 every day (electronic balance sensing capacity is 1.0 g, which is equivalent to 0.013 mm evaporation). During observation, windproof treatment shall be done to ensure the accuracy of measurement. Data processing method: evapotranspiration is mainly calculated by mass conservation in lysimeter method. According to lysimeter design principle, evapotranspiration is mainly determined by mass difference in two consecutive days. Because it is weighed every day, it is calculated by water balance.

2020-03-11

Evaporation and precipitation dataset in Hulugou outlet in Upstream of Heihe River (2013)

1. Data overview: This data set is the scale artificial evaporation dish and precipitation data of qilian station from January 1, 2013 to December 31, 2013. The artificial evaporator is a 20cm standard evaporator, and the precipitation is a 20cm standard rain gauge. 2. Data content: (1) the evaporation capacity is measured at 20:00 every day with 20 special measuring cups;It is before a day commonly 20 when measure clear water 20 millimeter with special measure cup (original quantity) pour into implement inside, 24 hours hind namely in the same day 20 hour, again measure the water inside implement (allowance), its reduce quantity is evaporation quantity.Namely: evaporation = original quantity - residual quantity.If there is precipitation between 20:00 of the previous day and 20:00 of the same day, the calculation formula is: evaporation = original quantity + precipitation - residual quantity. (2) precipitation is generally observed in two stages, namely once at 8 o 'clock and once at 20 o 'clock each day. In the rainy season, observation periods are increased, and additional measurements are needed when the rainfall is large.The daily rainfall is divided into 8 a.m. of each day, and the precipitation from 8 a.m. to 8 a.m. of the next day is the precipitation of the current day.If it is rain, measure it with 20 special measuring cups. When it snows, only use the outer tube as snow bearing equipment, and then weigh it with an electronic balance (shenyang longteng es30k-12 type electronic balance, the minimum sensible amount is 0.2g). 3. Space and time range: Geographical coordinates: longitude: 99° 53’e; Latitude: 38°16 'N; Height: 2981.0 m

2020-03-11

Evaporation and precipitation data in Hulugou outlet in the upstream of the Heihe River (2012)

1. Data overview: This data set is the scale artificial evaporation dish and precipitation data of qilian station from January 1, 2012 to December 31, 2012. The artificial evaporator is a 20cm standard evaporator, and the precipitation is a 20cm standard rain gauge. 2. Data content: (1) the evaporation capacity is measured at 20:00 every day with 20 special measuring cups;It is before a day commonly 20 when measure clear water 20 millimeter with special measure cup (original quantity) pour into implement inside, 24 hours hind namely in the same day 20 hour, again measure the water inside implement (allowance), its reduce quantity is evaporation quantity.Namely: evaporation = original quantity - residual quantity.If there is precipitation between 20:00 of the previous day and 20:00 of the same day, the calculation formula is: evaporation = original quantity + precipitation - residual quantity. (2) precipitation is generally observed in two stages, namely once at 8 o 'clock and once at 20 o 'clock each day. In the rainy season, observation periods are increased, and additional measurements are needed when the rainfall is large.The daily rainfall is divided into 8 a.m. of each day, and the precipitation from 8 a.m. to 8 a.m. of the next day is the precipitation of the current day.If it is rain, measure it with 20 special measuring cups. When it snows, only use the outer tube as snow bearing equipment, and then weigh it with an electronic balance (shenyang longteng es30k-12 type electronic balance, the minimum sensible amount is 0.2g). 3. Space and time range: Geographical coordinates: longitude: 99° 53’e;Latitude: 38°16 'N;Height: 2981.0 m

2020-03-11