The Antarctic McMurdo Dry Valleys ice velocity product is based on the Antarctic Ice Sheet Velocity and Mapping Project (AIV) data product, which is post-processed with advanced algorithms and numerical tools. The product is mapped using Sentinel-1/2/Landsat data and provides uniform, high-resolution (60m) ice velocity results for McMurdo Dry Valleys, covering the period from 2015 to 2020.
2022-11-17
Pine Island Glacier, Swett Glacier, etc. are distributed in the basins of the Antarctic Ice Sheet 21 and 22, which is one of the areas with the most severe melting in the Southwest Antarctica. This dataset first uses Cryosat-2 data (August 2010 to October 2018) to establish a plane equation in each regular grid, taking into account terrain items, seasonal fluctuations, backscattering coefficients, wave front width, lifting rails and other factors, and calculates the elevation change of ice cover surface in the grid through least square regression. In addition, we used ICESat-2 data (October 2018 to December 2020) to calculate the surface elevation change during the two periods by obtaining the elevation difference at the intersection of satellite lifting orbits in each regular grid. The spatial resolution of surface elevation change data in two periods is 5km × 5km, the file format is GeoTIFF, the projection coordinate is polar stereo projection (EPSG 3031), and it is named by the name of the satellite altimetry data used. The data can be opened using ArcMap, QGIS and other software. The results show that the average elevation change rate of the region from 2010 to 2018 is -0.34 ± 0.08m/yr, which belongs to the area with severe melting. The annual average elevation change rate from October 2018 to November 2020 is -0.38 ± 0.06m/yr, which is in an intensified state compared with CryoSat-2 calculation results.
2022-11-01
This data set includes five periods of lake transparency data, including 1995, 2002, 2005, 2010 and 2015. The data sources are: Landsat 5, Landsat 7 and Landsat 8. Method of use: It is convenient to measure the spectral reflectance. On the basis of analyzing the relationship between the spectral reflectance and the transparency measured synchronously, the semi empirical method is used to select the best band combination, establish the transparency algorithm of Qinghai Tibet Plateau lakes, and obtain the water transparency. The verification of measured points shows that the relative error of water transparency estimation is 35%.
2022-10-20
The fractional snow cover (FSC) is the ratio of snow cover area (SCA) to unit pixel area. The data set is made by bv-blrm snow area proportional linear regression empirical model; The source data used are mod09ga 500m global daily surface reflectance products and mod09a1 500m 8-day synthetic global surface reflectance products; The production platform uses Google Earth engine; The data range is global, the data preparation time is from 2000 to 2021, the spatial resolution is 500 meters, and the temporal resolution is year by year. This set of data can provide quantitative information of snow cover distribution for regional climate simulation and hydrological models.
2022-09-23
We propose an algorithm for ice fissure identification and detection using u-net network, which can realize the automatic detection of ice fissures of Typical Glaciers in Greenland ice sheet. Based on the data of sentinel-1 IW from July and August every year, in order to suppress the speckle noise of SAR image, the probabilistic patch based weights (ppb) algorithm is selected for filtering, and then the representative samples are selected and input into the u-net network for model training, and the ice cracks are predicted according to the trained model. Taking two typical glaciers in Greenland (Jakobshavn and Kangerdlussuaq) as examples, the average accuracy of classification results can reach 94.5%, of which the local accuracy of fissure area can reach 78.6%, and the recall rate is 89.4%.
2022-08-17
In 1970, land use was visually interpreted from MSS images, with an overall interpretation accuracy of more than 90%. Land classification was carried out in accordance with the land use classification system of the Chinese Academy of Sciences. For detailed classification rules, please read the data description document. The 2005 and 2015 data sets were collected from the European Space Agency (ESA) Data acquisition of global land cover types includes five Central Asian countries (Kazakhstan, Kyrgyzstan, Tajikistan, Turkmenistan and Uzbekistan) and Xinjiang, China. There are 22 land use types in the data set. The IPCC land use classification system is adopted. Please refer to the documentation for specific classification details.
2022-04-19
Based on a large number of measured aboveground biomass data of grassland, the temperate grassland types were divided according to the vegetation type map of China in 1980s Based on the Landsat remote sensing data of engine platform, the random forest model of grassland aboveground biomass and remote sensing data was constructed for different grassland types. On the basis of reliable verification, the annual aboveground biomass of grassland from 1993 to 2019 was estimated, and the annual spatial data set of aboveground biomass of temperate grassland in Northern China from 1993 to 2019 was formed. Aboveground biomass is defined as the total amount of organic matter of vegetation living above the ground in unit area. The original grid value has been multiplied by a factor of 100, unit: 0.01 g / m2 (g / m2). This data set can provide a scientific basis for the dynamic monitoring and evaluation of temperate grassland resources and ecological environment in northern China.
2022-04-18
Under the funding of the first project (Development of Multi-scale Observation and Data Products of Key Cryosphere Parameters) of the National Key Research and Development Program of China-"The Observation and Inversion of Key Parameters of Cryosphere and Polar Environmental Changes", the research group of Zhang, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, developed the snow depth downscaling product in the Qinghai-Tibet Plateau. The snow depth downscaling data set for the Tibetan Plateau is derived from the fusion of snow cover probability dataset and Long-term snow depth dataset in China. The sub-pixel spatio-temporal downscaling algorithm is developed to downscale the original 0.25° snow depth dataset, and the 0.05° daily snow depth product is obtained. By comparing the accuracy evaluation of the snow depth product before and after downscaling, it is found that the root mean square error of the snow depth downscaling product is 0.61 cm less than the original product. The details of the product information of the Downscaling of Snow Depth Dataset for the Tibetan Plateau (2000-2018) are as follows. The projection is longitude and latitude, the spatial resolution is 0.05° (about 5km), and the time is from September 1, 2000 to September 1, 2018. It is a TIF format file. The naming rule is SD_yyyyddd.tif, where yyyy represents year and DDD represents Julian day (001-365). Snow depth (SD), unit: centimeter (cm). The spatial resolution is 0.05°. The time resolution is day by day.
2022-04-18
Evapotranspiration over the Qinghai Tibet Plateau is calculated by etwatch, a land surface evapotranspiration remote sensing model based on multi-scale and multi-source data. Etwatch adopts the method of combining the residual term method with P-M formula to calculate evapotranspiration. Firstly, according to the characteristics of the data image, the suitable model is selected to retrieve the evapotranspiration on a sunny day; the remote sensing model is often lack of data because the weather conditions can not obtain a clear image. In order to obtain the daily continuous evapotranspiration, the penman Monteith formula is introduced, and the evapotranspiration results on a sunny day are regarded as the "key frame", and the surface impedance information of the key frame is used as the basis to construct the surface impedance Based on the daily meteorological data, the time series data of evapotranspiration are reconstructed. Through the data fusion model, the high spatial and temporal resolution evapotranspiration data set is constructed by combining the low and medium resolution evapotranspiration temporal variation information with the high resolution evapotranspiration spatial difference information, so as to generate the 8 km resolution evapotranspiration of the Qinghai Tibet Plateau Data sets (1990-2015).
2022-04-18
The data set consists of four sub tables, which are remote sensing monitoring of Lake area from 2000 to 2019, total lake water storage based on underwater 3D simulation model, Lake area volume equation based on underwater 3D simulation model, and key parameters and results of water storage measurement and Simulation of 24 typical lakes in Qinghai Province. The first sub table is the time series Lake area data from 2000 to 2019 from remote sensing image data monitoring. The third sub table stores the area storage capacity equation of the lake based on the underwater three-dimensional simulation model of the lake. The second sub table is the estimation result by combining the time series Lake area data and the area storage capacity equation, Finally, the key parameters and results of water storage measurement and Simulation of 24 typical lakes in Qinghai Province from 2000 to 2019 are obtained, including simulated water depth, maximum water depth, simulated reference water level and corresponding Lake area of each lake, which are stored in the fourth sub table.
2022-04-18
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn