Current Browsing: Basic geographic

Natural places names dataset at 1:1000 000 in Sanjiangyuan region (2017)

This data comes from the National Geographic Information Resources Catalogue Service System, which was provided free to the public by the National Basic Geographic Information Center in November 2017. We have spliced and cut the source of the three rivers as a whole, so as to facilitate the use of the study of the source area of the three rivers. The data trend is 2017. This data set is composed of 1:1 million natural place names (AANP) in Sanjiangyuan area, including traffic element names, memorial sites and historic sites, mountain names, river system names, marine geographical names, natural geographical names, etc. Natural Place Name Data (AANP) Attribute Item Names and Definitions: Attribute Item Description Fill in Example CLASS Toponymic Classification Code NAME in Chinese words PINYIN in Chinese Pinyin


Surface DEM for typical glaciers on the Tibetan Plateau (Version 1.0) (2003)

The DEMs of the typical glaciers on the Tibetan Plateau were provided by the bistatic InSAR method. The data were collected on November 21, 2013. It covered Puruogangri and west Qilian Mountains with a spatial resolution of 10 meters, and an elevation accuracy of 0.8 m which met the requirements of national 1:10 000 topographic mapping. Considering the characteristics of the bistatic InSAR in terms of imaging geometry and phase unwrapping, based on the TanDEM-X bistatic InSAR data, and adopting the improved SAR interference processing method, the surface DEMs of the two typical glaciers above were generated with high resolution and precision. The data set was in GeoTIFF format, and each typical glacial DEM was stored in a folder. For details of the data, please refer to the Surface DEMs for typical glaciers on the Tibetan Plateau - Data Description.


Elevation dataset of ASTER_DEM in the Yellow river upstream (2009)

Ⅰ. Overview This dataset is derived from the global 30m-resolution digital elevation product dataset, which is processed using the data of the first version (v1) of ASTER GDEM. Its spatial resolution is 30m. Due to the influence of clouds, lines, pits, bulges, dams or other anomalies generated by the boundary stacking, there are local anomalies in the first version of the original data of ASTER GDEM, so the digital elevation processed by ASTER GDEM v1 Data products have data anomalies in individual areas, and users need to pay attention to them during use. In addition, this data set can complement the SRTM global 90m resolution elevation dataset. Ⅱ. Data processing description ASTER GDEM is a fully automated method to process and generate ASTER archived data of 1.5 million scenes, including 1,264,118 ASTER DEM data based on independent scenes generated through stereo correlation. After de-cloud processing, residual outliers are removed, and the average value is taken as the final pixel value of ASTER GDEM object area. After correcting the remaining abnormal data, the global ASTER GDEM data was generated by 1°× 1° sharding. Ⅲ. Data content description The dataset covers the entire upper reaches of the Yellow River, and each data file name is generated based on the latitude and longitude of the lower left (southwest) Angle of the fractal geometry center. For example, the lower-left coordinate of the ASTGTM_N40E116 file is 40 degrees north latitude and 116 degrees east longitude. ASTGTM_N40E116_dem and ASTGTM_N40E116_num correspond to digital elevation model (DEM) and quality control (QA) data, respectively. Ⅳ. Data usage description ASTER GDEM data can be calculated and visualized. It has a broad application prospect in various fields, especially in mapping, surface deformation and military fields.Specifically, it mainly includes the following aspects: In scientific research, ASTER GDEM data plays an important role in geology, geophysics, seismic research, horizontal modeling, volcano monitoring and remote sensing image registration.The three-dimensional model of the ground is built by using high-precision digital terrain elevation data, which can be embedded and superimposed with the image of the ground to observe subtle changes of the earth surface. In civil and industrial applications, ASTER GDEM data can be used for civil engineering calculation, dam site selection, land use planning, etc. In communications, digital topographic data can help businesses build better broadcast towers and determine the best location of mobile phone booths.In terms of aviation safety, ASTER GDEM digital elevation data can be used to establish the enhanced aircraft landing alarm system, which greatly improves the aircraft landing safety coefficient. In the military, ASTER GDEM data is the basic information platform of C4ISR (army automatic command system), which is indispensable in the study of battlefield regional structure, combat direction, battlefield preset, combat deployment, troop concentration in projection, protection conditions, logistics support and other aspects.


Antarctic ice sheet surface elevation data (2003-2009)

The Antarctic ice sheet elevation data were generated from radar altimeter data (Envisat RA-2) and lidar data (ICESat/GLAS). To improve the accuracy of the ICESat/GLAS data, five different quality control indicators were used to process the GLAS data, filtering out 8.36% unqualified data. These five quality control indicators were used to eliminate satellite location error, atmospheric forward scattering, saturation and cloud effects. At the same time, dry and wet tropospheric, correction, solid tide and extreme tide corrections were performed on the Envisat RA-2 data. For the two different elevation data, an elevation relative correction method based on the geometric intersection of Envisat RA-2 and GLAS data spot footprints was proposed, which was used to analyze the point pairs of GLAS footprints and Envisat RA-2 data center points, establish the correlation between the height difference of these intersection points (GLAS-RA-2) and the roughness of the terrain relief, and perform the relative correction of the Envisat RA-2 data to the point pairs with stable correlation. By analyzing the altimetry density in different areas of the Antarctic ice sheet, the final DEM resolution was determined to be 1000 meters. Considering the differences between the Prydz Bay and the inland regions of the Antarctic, the Antarctic ice sheet was divided into 16 sections. The best interpolation model and parameters were determined by semivariogram analysis, and the Antarctic ice sheet elevation data with a resolution of 1000 meters were generated by the Kriging interpolation method. The new Antarctic DEM was verified by two kinds of airborne lidar data and GPS data measured by multiple Antarctic expeditions of China. The results showed that the differences between the new DEM and the measured data ranged from 3.21 to 27.84 meters, and the error distribution was closely related to the slope.


Distribution data of geomorphic surface in the upper reaches of Heihe River

The landform near Qilian in the upper reaches of Heihe River includes the first level denudation surface (wide valley surface) and the Ninth level river terrace. The stage surface distribution data is mainly obtained through field investigation. GPS survey is carried out for the distribution range of all levels of geomorphic surface. The field data is analyzed in the room, and then combined with remote sensing image, topographic map, geological map and other data, the distribution map of all levels of geomorphic surface in the upper reaches of Heihe river is drawn. The age of the denudation surface is about 1.4ma, and the formation of Heihe terrace is later than this age, all of which are terraces since late Pleistocene.


1:250000 DEM map of the middle reaches of Heihe River (2005-2007)

DEM (digital elevation model) is the abbreviation of digital elevation model, which is an important original data for watershed terrain and feature recognition. The principle of DEM is to divide the watershed into M rows and N columns of quadrilateral (cell), calculate the average elevation of each quadrilateral, and then store the elevation in a two-dimensional matrix. Because DEM data can reflect the local terrain features of a certain resolution, a large amount of surface morphology information can be extracted by DEM, which includes the slope, slope direction and the relationship between cells of watershed grid unit [7]. At the same time, the surface water flow path, river network and watershed boundary can be determined by certain algorithm. Therefore, to extract basin features from DEM, a good basin structure model is the premise and key of the design algorithm.


The irrigating area and the distribution of the main canal and lateral canal in Heihe River Basin

The distribution map of irrigation area and main and branch canals in Heihe River basin includes the main irrigation area and the distribution of all main and branch canals in Heihe River Basin. The irrigation area mainly includes Luocheng irrigation area, Youlian irrigation area, Liuba irrigation area, Pingchuan irrigation area, liaoquan irrigation area, Liyuan River irrigation area, yannuan irrigation area, Banqiao irrigation area, Shahe irrigation area, Xijun irrigation area, Yingke irrigation area, Daman irrigation area, Maying River irrigation area, shangsan irrigation area, Xinba irrigation area and Hongyazi irrigation area. The distribution map of main and branch canals includes all the main canals and branch canals of these 16 irrigation areas.


Basic datasets of the Tibetan highway in Chinese Cryospheric Information System

Chinese Cryospheric Information System is a comprehensive information system for the management and analysis of cryospheric data over China. The establishment of Chinese Cryospheric Information System is to meet the needs of earth system science, and provide parameters and verification data for the development of response and feedback models of permafrost, glacier and snow cover to global changes under GIS framework. On the other hand, the system collates and rescues valuable cryospheric data to provide a scientific, efficient and safe management and analysis tool. Chinese Cryospheric Information System selected three regions with different spatial scales as its main research areas to highlight the research focus. The research area along the Qinghai-Tibet highway is mainly about 700 kilometers long from Xidatan to Naqu, and 20 to 30 kilometers wide on both sides of the highway. The datasets of the Tibetan highway contains the following types of data: 1. Cryosphere data.Including: snow depth distribution. 2. Natural environment and resources.Include: Digital elevation topography (DEM) : elevation elevation, elevation zoning, slope and slope direction; Fundamental geology: Quatgeo 3. Boreholes: drilling data of 200 boreholes along the qinghai-tibet highway. Engineering geological profile (CAD) : lithologic distribution, water content, grain fraction data, etc 4. Model of glacier mass equilibrium distribution along qinghai-tibet highway: prediction of frozen soil grid data. The graphic data along the qinghai-tibet highway includes 13 map scales of 1:250,000.The grid size is 100×100m. For details, please refer to the documents (in Chinese): "Chinese Cryospheric Information System design. Doc", "Chinese Cryospheric Information System data dictionary. Doc", "Database of the Tibetan highway. Doc".


The vegetation map at the 1:4,000,000 of China (1979)

This dataset: Editor-in-Chief: Hou Xueyu Drawing: Hou Xueyu, Sun Shizhou, Zhang Jingwei, He Miaoguang. Wang Yifeng, Kong Dezhen, Wang Shaoqing Publishing: Map Press Issue: Xinhua Bookstore Year: 1979 Scale: 1: 4,000,000 It took five years to complete from May 1972 to July 1976. In the process of drawing legends and mapping, referring to the vast majority of vegetation survey data (including maps and texts) after 1949 in China, we held more than a dozen mapping seminars involving researchers from inside and outside the institute. During the layout after the mapping work was completed, many new survey data were added, especially vegetation data in western Tibet. The nature of this map basically belongs to the current vegetation map, including two parts of natural vegetation and agricultural vegetation. The legend of natural vegetation is arranged according to the seven vegetation groups. They are mainly divided according to the appearance of plant communities and certain ecological characteristics. The concept of agricultural vegetation community, like the natural vegetation community, also has a certain life form (appearance, structure, layer), species composition and a certain ecological location. In 1990, the State Key Laboratory of Resources and Environmental Information Systems of the Institute of Geographical Sciences and Resources, Chinese Academy of Sciences completed the digitization of this map, and wrote relevant data description documents. The digitized data also adopt equal product cone projection and can be converted into other projections by GIS software. This data includes a vector file in e00 format, a Chinese vegetation coding design description, a dataset description, a vegetation data layer attribute data table, and a scanned "People's Republic of China Vegetation Map-Brief Description" and other files. Data projection: Projection: Albers false_easting: 0.000000 false_northing: 0.000000 central_meridian: 110.000000 standard_parallel_1: 25.000000 standard_parallel_2: 47.000000 latitude_of_origin: 0.000000 Linear Unit: Meter (1.000000) Geographic Coordinate System: Unknown Angular Unit: Degree (0.017453292519943299) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Unknown Spheroid: Clarke_1866 Semimajor Axis: 6378206.400000000400000000 Semiminor Axis: 6356583.799999999800000000 Inverse Flattening: 294.978698213901000000


1:150,000 desertification type and land division map of Naiman Banner

This data is digitized from the "Naiman Banner Desertification Types and Land Consolidation Zoning Map" of the drawing. The specific information of this map is as follows: * Editors: Zhu Zhenda and Qiu Xingmin * Editor: Feng Yushun * Re-photography and Mapping: Feng Yushun, Liu Yangxuan, Wen Zi Xiang, Yang Taiyun, Zhao Aifen, Wang Yimou, Li Weimin, Zhao Yanhua, Wang Jianhua * Field trips: Qiu Xingmin and Zhang Jixian * Cartographic unit: compiled by Desert Research Office of Chinese Academy of Sciences * Publishing House: Shanghai China Printing House * Scale: 1: 150000 * Published: May 1984 * Legend: Severe Desertification Land, Intensely Developed Desertification Land, Developing Desertification Land, Potential Desertification Land, Non-desertification Land, Fluctuating Sandy Loess Plain, Forest and Shrub, Saline-alkali Land, Mountain Land, Cultivated Land and Midian Land 2. File Format and Naming Data is stored in ESRI Shapefile format, including the following layers: Naiman banner desertification type map, rivers, roads, reservoirs, railways, zoning 3. Data Attributes Desertification Class Vegetation Background Class Desertified land and cultivated sand dunes under development. Midland in Saline-alkali Land Severely desertified land Reservoir Trees and shrubbery Mountain Strongly developing desertified land Potential desertified land Lakes Non-desertification land Undulating sand-loess plain 2. Projection information: Angular Unit: Degree (0.017453292519943295) Prime Meridian: Greenwich (0.000000000000000000) Datum: D_Beijing_1954 Spheroid: Krasovsky_1940 Semimajor Axis: 6378245.000000000000000000 Semiminor Axis: 6356863.018773047300000000 Inverse Flattening: 298.300000000000010000