Current Browsing: Upper Reaches of Heihe Basin


Field soil survey and analysis data in the upper reaches of Heihe River Basin (2013-2014)

The dataset is the field soil measurement and analysis data of the upstream of Heihe River Basin from 2013 to 2014, including soil particle analysis, water characteristic curve, saturated water conductivity, soil porosity, infiltration analysis, and soil bulk density I. Soil particle analysis 1. The soil particle size data were measured in the particle size laboratory of the Key Laboratory of the Ministry of Education, West Ministry of Lanzhou University.The measuring instrument is Marvin laser particle size meter MS2000. 2. Particle size data were measured by laser particle size analyzer.As a result, sample points with large particles cannot be measured, such as D23 and D25 cannot be measured without data.Plus partial sample missing. Ii. Soil moisture characteristic curve 1. Centrifuge method: The unaltered soil of the ring-cutter collected in the field was put into the centrifuge, and the rotor weight of each time was measured with the rotation speed of 0, 310, 980, 1700, 2190, 2770, 3100, 5370, 6930, 8200 and 11600 respectively. 2. The ring cutter is numbered from 1 to the back according to the number. Since three groups are sampled at different places at the same time, in order to avoid repeated numbering, the first group is numbered from 1, the second group is numbered from 500, and the third group is numbered from 1000.It's consistent with the number of the sampling point.You can find the corresponding number in the two Excel. 3. The soil bulk density data in 2013 is supplementary to the sampling in 2012, so the data are not available at every point.At the same time, the soil layer of some sample points is not up to 70 cm thick, so the data of 5 layers cannot be taken. At the same time, a large part of data is missing due to transportation and recording problems.At the same time, only one layer of data is selected by random points. 4. Weight after drying: The drying weight of some samples was not measured due to problems with the oven during the experiment. 3. Saturated water conductivity of soil 1. Description of measurement method: The measurement method is based on the self-made instrument of Yiyanli (2009) for fixing water hair.The mariot bottle was used to keep the constant water head during the experiment.At the same time, the measured Ks was finally converted to the Ks value at 10℃ for analysis and calculation.Detailed measurement record table refer to saturation conductivity measurement description.K10℃ is the data of saturated water conductivity after conversion to 10℃.Unit: cm/min. 2. Data loss explanation: The data of saturated water conductivity is partly due to the lack of soil samples and the insufficient depth of the soil layer to obtain the data of the 4th or 5th layer 3. Sampling time: July 2014 4. Soil porosity 1. Use bulk density method to deduce: according to the relationship between soil bulk density and soil porosity. 2. The data in 2014 is supplementary to the sampling in 2012, so the data are not available at every point.At the same time, the soil layer of some sample points is not up to 70 cm thick, so the data of 5 layers cannot be taken. At the same time, a large part of data is missing due to transportation and recording problems.At the same time, only one layer of data is selected by random points. 5. Soil infiltration analysis 1. The infiltration data were measured by the "MINI DISK PORTABLE specific vector INFILTROMETER".The approximate saturation water conductivity under a certain negative pressure is obtained.The instrument is detailed in website: http://www.decagon.com/products/hydrology/hydraulic-conductivity/mini-disk-portable-tension-infiltrometer/ 2.D7 infiltration tests were not measured at that time because of rain. Vi. Soil bulk density 1. The bulk density of soil in 2014 refers to the undisturbed soil taken by ring cutter based on the basis of 2012. 2. The soil bulk density is dry soil bulk density, which is measured by drying method.The undisturbed ring-knife soil samples collected in the field were kept in an oven at 105℃ for 24 hours, and the dry weight of the soil was divided by the soil volume (100 cubic centimeters). 3. Unit: G /cm3

2020-10-13

Moraine distributions in the upstream of the Heihe River (2013-2014)

From 2013 to 2014, the Glacial Geomorphology of the upper reaches of Heihe River in the late Quaternary was investigated and sampled. Based on the field investigation and remote sensing image, the distribution map of moraine at different levels near the ridge of the upper reaches of the Bailang river was obtained.

2020-07-30

Land use / land cover data set for the upper reaches of the Heihe River Basin (2011)

The land use / land cover data set of Heihe River Basin in 2011 is the Remote Sensing Research Office of Institute of cold and drought of Chinese Academy of Sciences. Based on the remote sensing data of landsatm and ETM in 2011, combined with field investigation and verification, a 1:100000 land use / land cover image and vector database of Heihe River Basin is established. The data set mainly includes 1:100000 land use graph data and attribute data in the upper reaches of Heihe River Basin. The land cover data of 1:100000 (2011) in Heihe River Basin and the previous land cover are classified into six first-class categories (cultivated land, forest land, grassland, water area, urban and rural residents, industrial and mining land and unused land) and 25 second-class categories by the same hierarchical land cover classification system. The data type is vector polygon and stored in shape format.

2020-07-30

Sample ponit distribution in the upstream of the Heihe River Basin

This data is the longitude and latitude information of soil water sampling points in the "observation experiment of Soil Hydrological heterogeneity in the upper reaches of Heihe River and its impact on the hydrological process in mountainous areas" (91125010) of Heihe project, which is mainly used to express the spatial distribution of soil water sampling points in this project.

2020-07-28

Ages of geomorphic surfaces along the Heihe River (late pleistocene)

Based on the study of the terrace formation age in the upper reaches of heihe river, photoluminescence samples were collected from the sediments of grade 6 river terrace near the upper reaches of qilian river.The quartz particles (38-63 microns) in the sample were isolated in the laboratory, the equivalent dose and dose rate in the quartz particles were measured, and the photoluminescence age of the sample was finally obtained.The obtained ages range from 5ka to 82ka, corresponding to the years of cutting down the terraces of all levels.

2020-07-28

Distribution data of geomorphic surface in the upper reaches of Heihe River

The landform near Qilian in the upper reaches of Heihe River includes the first level denudation surface (wide valley surface) and the Ninth level river terrace. The stage surface distribution data is mainly obtained through field investigation. GPS survey is carried out for the distribution range of all levels of geomorphic surface. The field data is analyzed in the room, and then combined with remote sensing image, topographic map, geological map and other data, the distribution map of all levels of geomorphic surface in the upper reaches of Heihe river is drawn. The age of the denudation surface is about 1.4ma, and the formation of Heihe terrace is later than this age, all of which are terraces since late Pleistocene.

2020-07-28

The monitoring data of soil and groundwater temperature in Hulugou Watershed from 2016 May to 2016 September

The data includes the county-level data of characteristic agriculture distribution in the Qinghai Tibet Plateau, which lays the foundation for the spatial distribution and development of characteristic agriculture in the Qinghai Tibet Plateau.

2020-06-07

Datasets for the SWAT model in Heihe Rriver Basin

This data includes the basic terrain data, soil data, meteorological data, land use / land cover data, etc. needed for SWAT model operation. All maps and relevant point coordinates (meteorological station, hydrological station) adopt the coordinate system of Gauss Kruger projection which is consistent with the basic topographic map of our country. Data content includes: a) The basic topographic data include DEM and river network. The size of DEM grid is 50 * 50m, and the drainage network is manually digitized from 1:100000 topographic map. b) Soil data: including soil physics, soil chemistry and spatial distribution of soil types. The scale of digital soil map is 1:1 million, which is converted into grid format of ESRI, with grid size of 50 * 50m. Each soil profile can be divided into up to 10 layers. The sampling index of soil texture required by the model adopts the American Standard. The parameters are from the second National Soil Census data and related literature. c) Meteorological data: (1) Temperature: the data of daily maximum temperature, daily minimum temperature, wind speed and relative humidity are from the daily observation data of Qilian, Shandan, tole, yeniugou and Zhangye meteorological stations in and around the basin, with the period from 1999 to 2001. (2) Precipitation: the rainfall data comes from five hydrological stations in and around the basin, i.e. OBO (1990-1996), Sunan (1990-2000), Qilian (1990-2000), Yingluoxia (1990-2000), zamashk (1990-2000), Shandan (1999-2001), tole (1999-2001), yeniugou (1999-2001), Zhangye (1999-2001) and Qilian County (1999-2001) Observation data. (3) Wind speed and relative humidity: wind speed and relative humidity come from the daily observation data of 5 meteorological stations in Shandan, tole, yeniugou, Zhangye and Qilian county. The period is from 1999 to 2001. (4) Solar radiation: solar radiation has no corresponding observation data and is generated by model simulation. d) Land use / land cover: 1995 land use data, scale 1:100000. Convert it to grid format of ESRI, with grid size of 50 * 50m. e) Meteorological data simulation tool (weather generator) database: the weather data simulation tool of SWAT model can simulate and calculate the daily meteorological input data required by the model operation according to the monthly statistical data for many years without the actual daily observation data, and can also carry out the interpolation of incomplete observation data. The meteorological data are from the surrounding meteorological stations.

2020-03-11

Eddy covariance data in Hulugou sub-basin of alpine Heihe River (2012)

1. Data overview: This data set is eddy covariance Flux data of qilian station from January 1, 2012 to December 31, 2012. 2. Data content: The observation items are: horizontal wind speed Ux (m/s), horizontal wind speed Uy (m/s), vertical wind speed Uz (m/s), ultrasonic temperature Ts (Celsius), co2 concentration co2 (mg/m^3), water vapor concentration h2o (g/m^3), pressure press (KPa), etc.The data is 30min Flux data. 3. Space and time range: Geographical coordinates: longitude: 99° 52’e;Latitude: 38°15 'N;Height: 3232.3 m

2020-03-11

Manual observation of meteorological data in Hulugou sub-basin of Heihe River Basin (2013)

1. Data overview: In 2013, the standard meteorological field of qilian station, Cold and Arid Regions Environmental and Engineering Research Institute, observed various meteorological elements manually at time of 8:00, 14:00 and 20:00 every day. 2. Data content: The data include dry bulb temperature, wet bulb temperature, maximum temperature, minimum temperature, surface temperature (0cm), shallow surface temperature (5cm, 10cm, 15cm, 20cm), maximum surface temperature, minimum surface temperature. 3. Space and time range: Geographical coordinates: longitude: 99.9e; Latitude: 38.3n; Height: 2980 m.

2020-03-11