Current Browsing: Frozen ground distribution


Distribution map of the relationship between vegetation and freeze-thaw changes in the Arctic (1982-2015)

As an important part of the global carbon pool, Arctic permafrost is one of the most sensitive regions to global climate change. The rate of warming in the Arctic is twice the global average, causing rapid changes in Arctic permafrost. The NDVI change data set of different types of permafrost regions in the Northern Hemisphere from 1982 to 2015 has a temporal resolution of every five years, covers the entire Arctic Rim countries, and a spatial resolution of 8km. Based on multi-source remote sensing, simulation, statistics and measured data, GIS method and ecological method are used to quantify the regulation and service function of permafrost in the northern hemisphere to the ecosystem, and all the data are subject to quality control.

2022-07-15

Distribution data of permafrost in the source area of the Yellow River (2013-2015)

The distribution data of permafrost in the source area of the Yellow River is established based on the annual average ground temperature model of permafrost in the source area of the Yellow River. The annual average ground temperature of 0 ℃ is taken as the standard and boundary for dividing seasonal frozen soil and permafrost. Compared with the available permafrost maps of the source region of the Yellow River (1:3 million) and the permafrost background survey project of the Qinghai Tibet Plateau (1:1 million), the data set is based on the measured data of the Yellow River source area, which has higher consistency with the measured data, and the simulation accuracy of the permafrost distribution map is the highest. The data set can be used to verify the distribution of permafrost in the source area of the Yellow River, as well as to study the frozen soil environment.

2022-04-18

Basic datasets of the Tibetan Plateau in Chinese Cryospheric Information System

Chinese Cryospheric Information System is a comprehensive information system for the management and analysis of Chinese Cryospheric data. The establishment of Chinese Cryospheric Information System is to meet the needs of earth system science, to provide parameters and validation data for the development of response and feedback model of frozen soil, glacier and snow cover to global change under GIS framework; on the other hand, it is to systemically sort out and rescue valuable cryospheric data, to provide a scientific, efficient and safe management and division for it Analysis tools. The basic datasets of the Tibet Plateau mainly takes the Tibetan Plateau as the research region, ranging from longitude 70 -- 105 ° east and latitude 20 -- 40 ° north, containing the following types of data: 1. Cryosphere data. Includes: Permafrost type (Frozengd), (Fromap); Snow depth distribution (Snowdpt) Quatgla (Quatgla) 2. Natural environment and resources. Includes: Terrain: elevation, elevation zoning, slope, slope direction (DEM); Hydrology: surface water (Stram_line), (Lake); Basic geology: Quatgeo, Hydrogeo; Surface properties: Vegetat; 4. Climate data: temperature, surface temperature, and precipitation. 3. Socio-economic resources (Stations) : distribution of meteorological Stations on the Tibetan Plateau and it surrounding areas. 4. Response model of plateau permafrost to global change (named "Fgmodel"): permafrost distribution data in 2009, 2049 and 2099 were projected. Please refer to the following documents (in Chinese): "Design of Chinese Cryospheric Information System.doc", "Datasheet of Chinese Cryospheric Information System.DOC", "Database of the Tibetan Plateau.DOC" and "Database of the Tibetan Plateau 2.DOC".

2020-06-23

Frozen depth of frozen ground in Hulugou sub-basin of the Heihe River Basin (2013)

1. Data overview: This data set is the data set of frozen depth of permafrost observed artificially in qilian station from January 1, 2013 to December 31, 2013, and observed at 08 o 'clock every day. 2. Data content: The data content is the frozen depth data set of the tundra.The frozen depth (length) of the water in the inner rubber tube is used as a record to determine the freezing level and the upper and lower depth of the frozen layer according to the freezing position and length of the water in the frozen pot.In centimeters (cm), round off the whole number and round off the decimal.Observe once a day at 0:8. 3. Space and time range: Geographical coordinates: longitude: 99° 53’e;Latitude: 38°16 'N;Height: 2981.0 m

2020-03-11

Frozen depth of frozen ground in Hulugou, a sub-basin of Heihe River Basin (2012)

1. Data overview: This data set is the data set of frozen depth of permafrost observed artificially in qilian station from January 1, 2012 to December 31, 2012, and observed at 08 o 'clock every day. 2. Data content: The data content is the frozen depth data set of the tundra.The frozen depth (length) of the water in the inner rubber tube is used as a record to determine the freezing level and the upper and lower depth of the frozen layer according to the freezing position and length of the water in the frozen pot.In centimeters (cm), round off the whole number and round off the decimal.Observe once a day at 0:8. 3. Space and time range: Geographical coordinates: longitude: 99° 53’e;Latitude: 38°16 'N;Height: 2981.0 m

2020-03-11

Frozen depth of frozen ground in Hulugou sub-basin of the Heihe River Basin (2011)

1. Data overview: this data set is the data set of artificial observation of frozen soil depth at Qilian station from January 1, 2011 to December 31, 2011, at 08:00 every day. 2. Data content: data content is frozen depth data set of permafrost. Frozen soil observation uses the frozen depth (length) of water poured into the rubber inner tube as a record. According to the position and length of water frozen in the permafrost buried in the soil, the frozen layer and its upper and lower limit depths are measured. In centimeters (CM), rounded to the nearest whole number. Observe once every day at 0.8 o'clock. 3. Space time scope: geographic coordinates: longitude: 99 ° 53 ′ E; latitude: 38 ° 16 ′ n; altitude: 2981.0m

2020-03-11