Current Browsing: Airborne laser radar


HiWATER: Simultaneous continuous observation dataset of differential GPS with LiDAR and WIDAS airborne flying in the middle and upper reaches of the Heihe River Basin in 2012

During lidar and widas flight in summer 2012, the ground synchronously carried out the continuous observation of differential GPS of ground base station, and obtained the synchronous GPS static observation data, which is used to support the synchronous solution of aviation flight data. Measuring instrument: Two sets of triple R8 GNSS system. Zgp8001 sets Time and place of measurement: On July 19, 2012, EC matrix lidar flew and observed at mjwxb (northwest of Maojiawan) and sbmz (shibamin) two base stations at the same time On July 25, 2012, lidar of hulugou small watershed and tianmuchi small watershed in the upper reaches flew, observed in XT Xiatang, lidar of Zhangye City calibration field in the middle reaches, and observed in mjwxb (northwest of Maojiawan) On July 26, 2012, lidar flight of hulugou small watershed and tianmuchi small watershed in the upper reaches was observed in XT Xiatang, lidar flight of Zhangye City calibration field in the middle reaches was observed in HCZ (railway station) On August 1, 2012, the upper east and West branches of widas flew and observed in yng (yeniugou) On August 2, 2012, the midstream EC matrix test area widas flew and observed in HCZ (railway station) On August 3, 2012, the midstream EC matrix test area widas flew and observed in mjwxb (northwest Maojiawan) Data format: Original data format before differential preprocessing.

2020-03-14

HiWATER: Airborne LiDAR raw data in Qilian on Aug. 28, 2012

On 28 August 2012, Leica ALS70 airborne laser scanner carried by the Harbin Y-12 aircraft was used in a LiDAR airborne optical remote sensing experiment. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second ,third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 4800 m with the point cloud density 1.6 point per square meter. Airborne LiDAR-DEM and DSM data production were obtained through parameter calibration, automatic classification of point cloud density and manual editing.

2019-09-15

HiWATER: Airborne LiDAR raw data in Hulugou catchment

On 25 July 2012, Leica ALS70 airborne laser scanner carried by the Harbin Y-12 aircraft was used in a LiDAR airborne optical remote sensing experiment. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second ,third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 5500 m with the point cloud density 1 points per square meter. Airborne LiDAR-DEM and DSM data production were obtained through parameter calibration, automatic classification of point cloud density and manual editing.

2019-09-14

HiWATER: Airborne LiDAR raw data in Tianlaochi catchment

On 25 July 2012, Leica ALS70 airborne laser scanner carried by the Harbin Y-12 aircraft was used in a LiDAR airborne optical remote sensing experiment. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second ,third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 4800 m with the point cloud density 1 points per square meter. Airborne LiDAR-DEM and DSM data production were obtained through parameter calibration, automatic classification of point cloud density and manual editing.

2019-09-12

HiWATER: Airborne LiDAR data in the Shenshawo desert area of the Heihe River Basin

On 19 August 2012 (UTC+8), Leica ALS70 airborne laser scanner carried by the Harbin Y-12 aircraft was used in a LiDAR airborne optical remote sensing experiment. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 2900 m with the point cloud density 1 point per square meter. Airborne LiDAR-DEM and DSM data production were obtained through parameter calibration, automatic classification of point cloud density and manual editing.

2019-09-12

HiWATER: Airborne LiDAR raw data in the sample strip of the Heihe River Basin

On 25 August 2012, Leica ALS70 airborne laser scanner carried by the Harbin Y-12 aircraft was used in a LiDAR airborne optical remote sensing experiment. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 5200 m with the point cloud density 1 point per square meter. Airborne LiDAR-DEM and DSM data production were obtained through parameter calibration, automatic classification of point cloud density and manual editing.

2019-05-23

HiWATER: Airborne LiDAR raw data in the middle reaches of the Heihe River Basin

On 19 July 2012, Leica ALS70 airborne laser scanner carried by the Harbin Y-12 aircraft was used in a LiDAR airborne optical remote sensing experiment. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second ,third return intensities. The wavelength of laser light is 1064 nm. The relative flight altitude is 1500 m (the elevation of 2700 m) with the point cloud density 4 points per square meter. Airborne LiDAR-DEM and DSM data production were obtained through parameter calibration, automatic classification of point cloud density and manual editing.

2019-05-23

WATER: Dataset of ground truth measurements for snow synchronizing with Envisat ASAR in the Binggou watershed foci experimental area on Mar. 15, 2008

The dataset of ground truth measurements for snow synchronizing with Envisat ASAR was obtained in the Binggou watershed foci experimental area on Mar. 15, 2008. The Envisat ASAR data were acquired in AP mode and VV/VH polarization combinations, and the overpass time was approximately at 11:34 BJT. Observation items included: (1) Snow density, snow complex permittivity, snow volumetric moisture and snow gravimetric moisture by the snowfork in BG-B, BG-D, BG-E and BG-F; (2) Snow parameters including the snow surface temperature and the snow-soil interface temperature by the handheld infrared thermometer, the snow layer temperature by the probe thermometer, the snow grain size by the handheld microscope, snow density by the aluminum case, snow depth by the ruler, and the snow surface temperature synchronizing with ASAR in BG-H, BG-D, BG-E and BG-F; (3) The snow spectrum by the portable ASD (Xinjiang Meteorological Administration) synchronizing with ASAR in BG-H15; the major and minor axis and shape of the snow layer grain through the self-made snow sieve. Two files including raw data and the preprocessed data were archived.

2019-05-23