Current Browsing: Pailugou


Precipitation during the growing season in Pailougou watershed (2011-2013)

Precipitation is one of the elements of meteorological monitoring and a measurement basis of regional precipitation. Precipitation is the only source of water for plants’ survival in mountain areas. Therefore, precipitation is the main link of the forest hydrological cycle. This data only provides precipitation of the Pailugou watershed during the growing season.

2020-07-30

Transpiration dataset of Qinhai spruce stand during the growing season in Pailougou watershed (2011-2013)

It is of great significance to carry out the quantitative study on the evapotranspiration of forest vegetation in Qilian Mountain, to correctly understand the hydrological function of the forest ecosystem in Qilian Mountain, to understand the water cycle process and to develop the hydrological model of the watershed, and to make a reasonable forest management plan. Forest evapotranspiration is mainly composed of soil surface evaporation, vegetation transpiration and canopy interception water evaporation. Traditional evapotranspiration research methods can be divided into two categories: actual measurement and estimation. The actual measurement methods include hydrology method, micro meteorology method and plant physiology method; the estimation method is to calculate Evapotranspiration by model, mainly including analysis model and empirical model. However, none of these methods can effectively distinguish forest transpiration from evaporation. The trunk liquid flow method can effectively calculate the transpiration of forest land by measuring the transpiration water consumption of trees. The trunk liquid flow method can effectively calculate the transpiration of forest land by measuring the transpiration water consumption of trees. The transpiration water consumption of Picea crassifolia forest was measured by thermal pulse technique, and the scale was extended to the stand scale to indicate the transpiration water consumption of Picea crassifolia forest.

2020-03-10

Forest investigation data about Qinghai spruce stand in Pailougou watershed (2011)

Forest survey is the application of measurement, tree measurement, remote sensing and other professional techniques and methods, survey, sampling and computer technology and other means to understand the quantity, quality, distribution and growth of forests within a specific range, so as to provide basic data for the formulation of forestry policies and scientific management of forests, as well as for scientific research. In the drainage ditch watershed of Qilian Mountain, there are three plots of Picea crassifolia forest in Qinghai Province, each of which is 2800m, 2900m and 3000m above sea level. Plot 01 is 20 * 30m and plot 02-09 is 20 * 35m. The traditional methods were used to investigate the tree height, DBH, base diameter and crown diameter of Picea crassifolia, providing basic data for the study of ecological hydrology of Picea crassifolia forest in the upper reaches of Heihe River.

2020-03-10

Qinhai spruce canopy conductance in Pailougou watershed (2011-2013)

Canopy conductance (mm s-1) is a sensitive index of forest transpiration response to environmental factors, and is a key parameter in water and carbon exchange model. The data is obtained by expanding the water consumption scale measured by stem sap flow technology to the stand scale to obtain the water consumption of the stand, and then using penman equation to calculate. This data mainly provides basic data for some eco hydrological models.

2020-03-10

Leaf area index of Qinhai spruce stand at 2800 m above sea level in Pailougou watershed (2011)

Leaf area index, also known as leaf area coefficient, refers to the multiple of the total area of plant leaves in the land area per unit land area. Leaf area index is an important structural parameter of ecosystem, which is used to reflect the number of plant leaves, the change of canopy structure, the life activity of plant community and its environmental effect, to provide structured quantitative information for the description of material and energy exchange on the canopy surface, and to balance the energy of carbon accumulation, vegetation productivity and the interaction between soil, plant and atmosphere, Vegetation remote sensing plays an important role. The leaf area index and other indexes of Picea crassifolia forest in Pailugou watershed were measured by plant canopy imager CI - 110

2020-03-10

Soil evaporation dataset of Qinghai spruce stand at 2800m above sea level in Pailougou watershed (2011-2013)

Soil evaporation in forest land is a process in which water in soil enters the atmosphere from the soil surface through rising and vaporizing. Soil evaporation affects the change of soil water content, which is an important part of hydrological cycle. The data were observed by the mini lysmeter evaporation tube, which was designed to provide data support for the study of water vertical exchange rule of Picea crassifolia forest.

2020-03-10

Qinghai spruce canopy interception at 2800m above sea level in Pailougou watershed (2011-2013)

Forest canopy interception refers to the hydrological process in which part of water is intercepted and received by forest canopy and redistributed to precipitation in the process of precipitation. The data include precipitation, throughfall, canopy interception and interception rate, which are mainly used to provide data support for understanding the eco hydrological process of Picea crassifolia forest.

2020-03-10

Soil moisture content of Qinhai spruce stand at 2800 m above sea level in Pailougou water shed (2011)

Soil moisture, also known as soil moisture. It's the water that stays in the pores of the soil. The main source of soil water in Picea crassifolia forest is atmospheric precipitation, which is the only source of water absorbed by Picea crassifolia to maintain its growth. This data is the soil moisture data of Picea crassifolia forest measured by the soil moisture intelligent neutron instrument.

2020-03-10

Weather data at 2800m above sea level in Qinhai spruce stand of Pailougou watershed

Meteorological elements are indicators of atmospheric variables or phenomena indicating weather conditions at a given place and at a given time. We used automatic forest weather station to monitor the meteorological elements data of Pailugou Watershed at 2800m above sea level. The main meteorological elements monitored include total radiation, net radiation, temperature, relative humidity, wind speed, and wind direction, which basically reflect the changes in meteorological elements in the Qinghai spruce forest.

2019-09-14

Soil moisture content of Qinghai Spruce Stand at 2800m above sea level in Pailugou Watershed in 2012-2013

Soil moisture, also known as soil humidity. It is the moisture that remains in the pore space of the soil. The main source of soil moisture in Qinghai spruce forest is atmospheric precipitation, which is the only source of water absorption of Qinghai spruce to survive. The data is the soil moisture of Qinghai spruce forest in Pailugou of Heihe River Basin measured by the EM50 soil moisture meter produced in the United States.

2019-09-12