Current Browsing: 2013-08-08 to 2013-12-31


HiWATER: Dataset of hydrometeorological observation network (automatic weather station of A’rou sunny slope station, 2013)

This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of A’rou sunny slope station between 8 August, 2013, and 31 December, 2013. The site (100.520° E, 38.090° N) was located on a cold grassland surface in the sunny slope, which is near north of A’rou town, Qilian county, Qinghai Province. The elevation is 3529 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45AC; 5 m, north), wind speed and direction profile (034B; 10 m, north), air pressure (CS100; in the tamper box on the ground), rain gauge (TE525M; 10 m), four-component radiometer (CNR1; 6 m, south), two infrared temperature sensors (SI-111; 6 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (109; 0, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (CS616; -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and two photosynthetically active radiation (PQS-1; 6 m, south, one vertically downward and one vertically upward). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content), and photosynthetically active radiation of upward and downward (PAR_up and PAR_down) (μmol/(s m-2)). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

2020-04-10

HiWATER: Dataset of hydrometeorological observation network (automatic weather station of A’rou shady slope station, 2013)

This dataset includes data recorded by the Hydrometeorological observation network obtained from the automatic weather station (AWS) at the observation system of Meteorological elements gradient of A’rou shady slope station between 8 August, 2013, and 31 December, 2013. The site (100.411° E, 37.984° N) was located on a cold grassland surface on the shady slope, which is near south of A’rou township, Qilian county, Qinghai Province. The elevation is 3536 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (HMP45AC; 5 m, north), wind speed and direction profile (010C/020C; 10 m, north), air pressure (278; in the tamper box on the ground), rain gauge (TE525M; 10 m), four-component radiometer (CNR4; 6 m, south), two infrared temperature sensors (SI-111; 6 m, south, vertically downward), soil heat flux (HFP01; 3 duplicates, -0.06 m), soil temperature profile (109-L; 0, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (CS616; -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), and two photosynthetically active radiation (PQS-1; 6 m, south, one vertically downward and one vertically upward). The observations included the following: air temperature and humidity (Ta_5 m; RH_5 m) (℃ and %, respectively), wind speed (Ws_10 m) (m/s), wind direction (WD_10 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m2), infrared temperature (IRT_1 and IRT_2) (℃), soil heat flux (Gs_1, Gs_2 and Gs_3) (W/m2), soil temperature (Ts_0 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content), and photosynthetically active radiation of upward and downward (PAR_up and PAR_down) (μmol/ (s m-2)). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-9-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

2020-04-10