Current Browsing: Surface Air Temperature

China meteorological forcing dataset (1979-2018)

The China Meteorological Forcing Dataset (CMFD) is a high spatial-temporal resolution gridded near-surface meteorological dataset that was developed specifically for studies of land surface processes in China. The dataset was made through fusion of remote sensing products, reanalysis dataset and in-situ observation data at weather stations. Its record starts from January 1979 and keeps extending (currently up to December 2018) with a temporal resolution of three hours and a spatial resolution of 0.1°. Seven near-surface meteorological elements are provided in CMFD, including 2-meter air temperature, surface pressure, specific humidity, 10-meter wind speed, downward shortwave radiation, downward longwave radiation and precipitation rate.


Qilian Mountains integrated observatory network: Dataset of Heihe integrated observatory network (an observation system of meteorological elements gradient of Daman superstation, 2018)

This dataset includes data recorded by the Heihe integrated observatory network obtained from an observation system of Meteorological elements gradient of Daman Superstation from January 1 to December 31, 2018. The site (100.372° E, 38.856° N) was located on a cropland (maize surface) in the Daman irrigation, which is near Zhangye city, Gansu Province. The elevation is 1556 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (AV-14TH;3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 2.5 m, 8 m in west of tower), four-component radiometer (PIR&PSP; 12 m, towards south), two infrared temperature sensors (IRTC3; 12 m, towards south, vertically downward), photosynthetically active radiation (LI190SB; 12 m, towards south, vertically upward; another four photosynthetically active radiation, PQS-1; two above the plants (12 m) and two below the plants (0.3 m), towards south, each with one vertically downward and one vertically upward), soil heat flux (HFP01SC; 3 duplicates with G1 below the vegetation; G2 and G3 between plants, -0.06 m), a TCAV averaging soil thermocouple probe (TCAV; -0.02, -0.04 m), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (CS616; -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), wind direction (WD_3 m, WD_5 m, WD_10 m, WD_15 m, WD_20 m, WD_30m, and WD_40 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2, and Gs_3, between plants) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content), above the plants photosynthetically active radiation of upward and downward (PAR_U_up and PAR_U_down) (μmol/ (s m-2)), and below the plants photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m-2)). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day.The meterological data during September 17 and November 7 and TCAV data after November 7 were wrong because the malfunction of datalogger. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2018-6-10 10:30. Moreover, suspicious data were marked in red. For more information, please refer to Liu et al. (2018) (for sites information), Liu et al. (2011) for data processing) in the Citation section.


Daily standard weather station dataset in Sanjiangyuan region (1981-2015)

The files in this data set are named as: 1. Pressure of the station: SURF_CLI_CHN_MUL_DAY-PRS-10004-SITEID.TXT 2. Temperature: SURF_CLI_CHN_MUL_DAY-TEM-12001-SITEID.TXT 3. Relative humidity: SURF_CLI_CHN_MUL_DAY-RHU-13003-SITEID.TXT 4. Precipitation: SURF_CLI_CHN_MUL_DAY-PRE-13011-SITEID.TXT 5. Evaporation: SURF_CLI_CHN_MUL_DAY-EVP-13240-SITEID.TXT 6. Wind direction and wind speed: SURF_CLI_CHN_MUL_DAY-WIN-11002-SITEID.TXT 7. Sunshine: SURF_CLI_CHN_MUL_DAY-SSD-14032-SITEID.TXT 8.0cm Ground Temperature: SURF_CLI_CHN_MUL_DAY-GST-12030-0cm-SITEID.TXT Detailed format descriptions for each data file are given in the SURF_CLI_CHN_MUL_DAY_FORMAT.doc file. The meteorological site information contained in this data set is as follows: Site_id lat lon ELV name_En 52754 37.33 100.13 8301.50 Gangcha 52833 36.92 98.48 7950.00 Uran 52836 36.30 98.10 3191.10 Dulan 52856 36.27 100.62 2835.00 Chabcha 52866 36.72 101.75 2295.20 Xining 52868 36.03 101.43 2237.10 Guizhou 52908 35.22 93.08 4612.20 Wu Daoliang 52943 35.58 99.98 3323.20 Xinghai 52955 35.58 100.75 8120.00 Guinan 52974 35.52 102.02 2491.40 Tongren 56004 34.22 92.43 4533.10 Toto River 56018 32.90 95.30 4066.40 Zaduo 56021 34.13 95.78 4175.00 Qumalai 56029 33.02 97.02 3681.20 Yushu 56033 34.92 98.22 4272.30 Maddo 56034 33.80 97.13 4415.40 Qingshui River 56038 32.98 98 98.10 9200.00 Shiqu 56 043 34.47 100.25 3719.00 Golo 56 046 33.75 99.65 3967.50 Dari 56065 34.73 101.60 8500.00 Henan 56 067 33.43 101.48 3628.50 Jiuzhi 56074 34.00 102.08 3471.40 Marqu 56080 35.00 102.90 2910.00 Hezuo 56106 31.88 93.78 4022.80 Suoxian 56116 31.42 95.60 3873.10 Ding Qing 56125 32.20 96.48 3643.70 Xiangqian 56128. 31.22. 96.60. 3810.00 Leiwuqi 56 137 31.15 97.17 3306.00 Changdu 56151 32.93 100.75 8530.00 Banma 56152 32.28 100.33 8893.90 Saida


National annual average surface temperature and freezing index by remote sensing (2008)

The 2008 national remote sensing annual average surface temperature and freezing index is a 5 km instantaneous surface temperature data product based on MODIS Aqua/Terra four times a day by Ran Youhua et al. (2015). A new method for estimating the annual average surface temperature and freezing index has been developed. The method uses the average daily mean surface temperature observed by LST in morning and afternoon to obtain the daily mean surface temperature. The core of the method is how to recover the missing data of LST products. The method has two characteristics: (1) Spatial interpolation is carried out on the daily surface temperature variation observed by remote sensing, and the spatial continuous daily surface temperature variation obtained by interpolation is utilized, so that satellite observation data which is only once a day is applied; (2) A new time series filtering method for missing data is used, that is, the penalty least squares regression method based on discrete cosine transform. Verification shows that the accuracy of annual mean surface temperature and freezing index is only related to the accuracy of original MODIS LST, i.e. the accuracy of MODIS LST products is maintained. It can be used for frozen soil mapping and related resources and environment applications.


Dataset of 0.01° Surface Air Temperature over Tibetan Plateau (2000-2015)

The surface air temperature dataset of the Tibetan Plateau is obtained by downscaling the China regional surface meteorological feature dataset (CRSMFD). It contains the daily mean surface air temperature and 3-hourly instantaneous surface air temperature. This dataset has a spatial resolution of 0.01°. Its time range for surface air temperature dataset is from 2000 to 2015. Spatial dimension of data: 73°E-106°E, 23°N-40°N. The surface air temperature with a 0.01° can serve as an important input for the modeling of land surface processes, such as surface evapotranspiration estimation, agricultural monitoring, and climate change analysis.


Simulated meteorological forcing data of three kilometers and six hours in Heihe River basin (2011-2016)

In east Asia, institute of atmospheric physics, Chinese Academy of Sciences key laboratory of regional climate and environment development of regional integration environment with independent copyright system model RIEMS 2.0, on the basis of the regional climate model RIEMS 2.0 in the United States center for atmospheric research and the development of the university of binzhou mesoscale model (MM5) is a static dynamic framework, coupled with some physical processes needed for the study climate solutions.These processes include the biosphere - atmosphere transmission solutions, using FC80 closed Grell cumulus parameterization scheme, MRF planetary boundary condition and modify the CCM3 radiation, such as the heihe river basin observation and remote sensing data of important parameters in the model for second rate, USES the heihe river basin vegetation data list data of land use in 2000 and 30 SEC DEM data in heihe river basin, build up suitable for the study of heihe river basin ecological - hydrological processes of the regional climate model. Drive field: ERA-INTERIM reanalysis data Spatial scope: the grid center of the simulation area is located at (40.30n, 99.50e), the horizontal resolution is 3 km, and the number of simulated grid points in the model is 161 (meridional) X 201 (zonal). Projection: LAMBERT conformal projection, two standard latitudes of 30N and 60N. Time range: from January 1, 2011 to December 31, 2016, with an interval of 6 hours Description of file contents: monthly storage by grads without format.Except the maximum and minimum temperature as the daily scale, the other variables are all 6-hour data. MATLAB can be used to read, visible tmax_erain_xiong_heihe.m file description. Data description of heihe river basin: 1) Anemometer west wind (m/s) college usurf for short 2) Anemometer south wind(m/s), vsurf for short College 3) Anemometer temperature (deg) K tsurf College 4) maximal temperature (deg) K tmax 5) minimal temperature (deg K) abbreviated as tmin 6) college Anemom specific humidity (g/kg) college qsurf for short 7) value (mm/hr) is simply value p College 8) Accumulated evaporation (mm/hr) evap 9) sensible heat (watts/m**2/hr) for short College 10) Accumulated net infrared radiation (watts/m * * 2 / hr) netrad for short College definition file name: -erain-xiong. Month and year


WATER: Dataset of observations at the regional meteorological stations of Zhangye (2008-2009)

This data set contains the meteorological data of 45 regional stations in Zhangye area of Gansu Province from 2008 to 2009. There are two factors (air temperature and rainfall): Dongdashan forest farm and Anyang in Ganzhou district; Horseshoe temple in Sunan County; Longqu in Zhangye; Junma farm in Shandan; Mawei Lake in Gaotai; Banqiao in Linze. The observation of the three elements (wind direction, air temperature and rainfall) are: the Imperial City, the big river and recreation in Sunan County. The observation of the four elements (wind direction, wind speed, air temperature and rainfall) are: Tiancheng, Baba, luotuocheng, Xinba and Nanhua in Gaotai County; Pingchuan, Xinhua, nijiaying and yinggezui in Linze County; Jing'an, hongshawo forest farm, pingpingpingbao, Daman, alkali beach and shigangdun in Ganzhou district; Gushanzi, Longshoushan forest farm, Laojun, Liqiao, dongle, Junma first farm in Shandan County Liudun and junmachang in Qilian Mountain; Liuba, Sanbao, zhaizhaizhaizi, shuangshusi, haichaoba and dadonggan in Minle County; Xishui in Sunan County. The observation of the five factors (relative humidity, wind direction, wind speed, air temperature and rainfall) are: Yanzhishan forest farm in Shandan County; Minghua in Sunan County. The observation of the five factors (air pressure, wind direction, wind speed, air temperature and rainfall) are: Yanzhishan forest farm in Shandan County; Minghua in Sunan County. The six elements of observation (air pressure, humidity, wind direction, wind speed, air temperature and rainfall) are as follows: East top of dacha, dacha and crescent platform in Sunan County. The data recording unit shall comply with the ground meteorological observation specifications, and the data storage shall be expressed as an integer, as follows: ten times record of temperature expansion; ten times record of precipitation expansion; ten times record of wind speed expansion. The data format is ASCII text file.


WATER: Dataset of sun photometer observations in the Linze grassland foci experimental area (2008)

The dataset of sun photometer observations was obtained in Linze grassland station, the reed plot A, the saline plot B, the barley plot E, the observation stationof the Linze grassland foci experimental areaand Jingdu hotel of Zhangye city. The optical depth in 1020nm, 936nm, 870nm, 670nm and 440nm were all acquired by CE318 from May 30 to Jun. 11, 2008. And from Jun. 15 to Jul.11, the data of 1640nm, 1020nm, 936nm, 870nm, 670nm, 550nm, 440nm, 380nm and 340nm were acquired. Both measurements were carried out at intervals of 1 minute. Optical depth, rayleigh scattering, aerosol optical depth, the horizontal visibility, air temperature and pressure near land surface, the solar azimuth and zenith could all be further retrieved. Readme file was attached for detail.


WATER: Dataset of meteorological station observations at the Yeniugou cold region hydrological station (2008-2009)

The dataset of meteorological station observations (2008-2009) was obtained at the Yeniugou cold region hydrological station (E99°33'/N38°28', 3320m), Qilian county, Qinghai province. Observation items were multilayer (2m and 10m) of the air temperature and air humidity, the wind speed and direction, the air pressure, precipitation, the global radiation, the net radiation, the multilayer soil temperature (20cm, 40cm, 60cm, 80cm, 120cm and 160cm), soil moisture (20cm, 40cm, 60cm, 80cm, 120cm and 160cm), and soil heat flux. For more details, please refer to the attached Data Directions.


WATER: Dataset of mobile meteorological station observations

The dataset of mobile meteorological station observations was obtained in the foci experiment area from March to April, 2008. To synergize the very high resolution airborne remote sensing and ground-based measurements, 11 mobile observations, including meteorological stations (for meteorological data) and GPS (for observation sites), were carried out in Binggou, A'rou and Biandukou. The items included the wind speed and direction at 3.03m (the truck height 1.84m plus the vane height 1.19m), the air temperature and humidity at 3.04m (the truck height 1.84m plus the vane height 1.2m), the surface temperature (the truck height 1.84m plus 1.06m) and the total radiation (the truck height 1.84m plus 1.39m). The observation sites and time were as follows: Dadongshu mountain pass-A'rou 15-3-2008 Biandukou-Qilian 18-3-2008 A'rou-Biandukou 19-3-2008 Qilian-Minle 20-3-2008 Mingle-Zhangye 21-3-2008 Binggou-Dadongshu mountain pass 22-3-2008 Binggou-Dadongshu mountain pass 24-3-2008 Binggou-Dadongshu mountain pass 29-3-2008 Binggou-Dadongshu mountain pass 30-3-2008 Qilian-A'rou 31-3-2008 A'rou 01-4-2008 The data were named after WATER_Mobile_ AWS_yyyymmdd (yyyymmdd for observation time).