The station data information of 21 regular meteorological observation stations in Heihe River Basin and surrounding areas and 13 national benchmark stations around Heihe River provided by Heihe plan data management center are used to make statistics and collation of daily wind speed and calculate the monthly wind speed data of 1961-2010 for many years. The spatial stability analysis is carried out to calculate the variation coefficient. If the variation coefficient is greater than 100%, the geographical weighted regression is used to calculate the relationship between the station and the geographical terrain factors, and the monthly wind speed distribution trend is obtained; if the variation coefficient is less than or equal to 100%, the common least square regression is used to calculate the relationship between the station wind speed value and the geographical terrain factors (longitude and latitude, elevation, slope, aspect, etc.) The trend of monthly wind speed distribution is obtained, and the residual after removing the trend is fitted and corrected by HASM (high accuracy surface modeling method). Finally, the monthly average wind speed distribution of the Heihe River Basin in 1961-2010 is obtained by adding the trend surface results and the residual correction results. Time resolution: monthly average wind speed for many years from 1961 to 2010. Spatial resolution: 500M.
2020-03-28
Based on the data of 21 regular meteorological observation stations in Heihe River Basin and its surrounding areas and 13 national benchmark stations around Heihe River provided by the data management center of Heihe plan, the daily sunshine hours are statistically sorted out and the monthly sunshine hours data of 1961-2010 for many years are calculated. The spatial stability analysis is carried out to calculate the variation coefficient. If the variation coefficient is greater than 100%, the geographical weighted regression is used to calculate the relationship between the station and the geographical terrain factors, and the monthly sunshine hours distribution trend is obtained; if the variation coefficient is less than or equal to 100%, the ordinary least square regression is used to calculate the sunshine hours and the geographical terrain factors (longitude, latitude, elevation, slope, aspect, etc.) of the station )The distribution trend of sunshine hours per month is obtained, and the residuals after removing the trend are fitted and corrected by HASM (high accuracy surface modeling method). Finally, the monthly average sunshine hours distribution of the Heihe River Basin in 1961-2010 is obtained by adding the trend surface results and the residual correction results. Time resolution: monthly average sunshine hours for many years from 1961 to 2010. Spatial resolution: 500M.
2020-03-28
The routine meteorological observation data set of four times a day provided by the data management center of Heihe plan is adopted, including 13 stations. The daily evaporation was statistically sorted out, and the monthly evaporation data of 2000-2009 years was calculated. The spatial stability analysis is carried out to calculate the coefficient of variation. If the coefficient of variation is greater than 100%, the geographical weighted regression is used to calculate the relationship between the station and the geographical terrain factors, and the monthly evaporation distribution trend is obtained; if the coefficient of variation is less than or equal to 100%, the common least square regression is used to calculate the relationship between the station evaporation value and the geographical terrain factors (latitude, longitude, elevation, slope, aspect, etc.) After the trend is removed, the residuals are fitted and corrected by HASM (high accuracy surface modeling method). Finally, the monthly average evaporation distribution of the Heihe River Basin in 1961-2010 is obtained by adding the trend surface results and the residual correction results. Time resolution: monthly average evaporation in 2000-2009. Spatial resolution: 500M.
2020-03-28
The data are from 2011 to 2012. A 30m×30m Picea crassifolia canopy interception sample plot was set up in the Picea crassifolia sample plot at an altitude of 2800m m. A siphon raingauge model DSJ2 (Tianjin Meteorological Instrument Factory) was set up on the open land of the river about 50m from the sample plot to observe the rainfall outside the forest and its characteristics. Penetrating rain in the forest adopts a combination of manual observation and automatic observation. Automatic observation is mainly realized through a penetrating rain collection system arranged in the interception sample plot, which consists of a water collecting tank and an automatic recorder. Two 400cm×20cm water collecting tanks are connected with DSJ2 siphon rain gauge, and the change characteristics of penetrating rain under the forest are continuously recorded by an automatic recorder. Due to the spatial variability of the canopy structure of Picea crassifolia forest in the sample plot, a standard rainfall tube for manual observation is also arranged in the sample plot to observe the penetrating rain in the forest. Ninety rainfall tubes with a diameter of 20cm are arranged in the sample plot at intervals of 3m. After each precipitation event ends and the penetrating rain in the forest stops, the amount of water in the rain barrel will be emptied and the penetrating rain in the barrel will be measured with the rain cup.
2020-03-14
This data is the water level data of 2011-2012, which is observed by water level recorder. From July 14 to September 9, 2011, the observation was recordered every five minutes; from June 4 to July 10, 2012, the observation was recordered every ten minutes. The data content is the temperature and atmospheric pressure inside the hole, and the data is the daily scale data. The data shall be opened with HOBO software.
2020-03-14
This data set is typical specific emissivity data set of Heihe River Basin. Data observation is from March 25, 2014 to June 30, 2015. Instrument: Portable Fourier transform infrared spectrometer (102f), hand-held infrared thermometer Measurement method: 102f was used to measure the radiation values of cold blackbody, warm blackbody, observation target and gold plate. Using the radiation value of the cold and warm blackbody, the 102f is calibrated to eliminate the influence of the instrument's own emission. By using the iterative inversion algorithm based on smoothness, the specific emissivity and the object temperature are inversed. The specific emissivity range is 8-14 μ m, and the resolution is 4cm-1. This data set contains the original radiation curves (in ASCII format) and recording files of cold blackbody, warm blackbody, measured target and gold plate obtained by 102f.
2020-03-13
The data set contains observation data from the Tianlaochi small watershed automatic weather station. The latitude and longitude of the station are 38.43N, 99.93E, and the altitude is 3100m. Observed items are time, average wind speed (m/s), maximum wind speed (m/s), 40-60cm soil moisture, 0-20 soil moisture, 20-40 soil moisture, air pressure, PAR, air temperature, relative humidity, and dew point temperature , Solar radiation, total precipitation, 20-40 soil temperature, 0-20 soil temperature, 40-60 soil temperature. The observation period is from May 25, 2011 to September 11, 2012, and all parameter data are compiled on a daily scale.
2020-03-13
This data comes from the Tianlaochi watershed sample plot. The vegetation types of the sample plot are grassland, shrub, Sabina przewalskii and Picea crassifolia. The self-made Lysimeter is mainly used to observe the soil evapotranspiration characteristics in Picea crassifolia forestry. To provide basic data for the development of watershed evapotranspiration model. At about 19:00 every day, an electronic scale with an accuracy of 1g is used to weigh the inner barrel. In case of rain, observe whether there is leakage in the leakage barrel. If there is leakage, measure the leakage amount in the leakage barrel as well. The observation period in 2011 is from May 30 to September 10. The observation period in 2012 is from June 11 to September 10. Observation instrument: 1) standard 20cm diameter rain tube rain gauge. 2) self-made lysimeter (diameter 30.5cm, barrel height 28.5). 3) Electronic balance (accuracy: 0.1g) used to observe the weight change of self-made lysimeter.
2020-03-12
This data set is the precipitation characteristic data in the precipitation interception data of alpine shrub in hulugou basin in the upper reaches of Heihe River in 2012. The observation date is from October 2, 2011 to September 24, 2012. The observation contents include precipitation, precipitation duration, precipitation intensity and frequency of throughfall. The observation data are recorded by self recording rain gauge and artificial rain gauge.
2020-03-11
1. Data overview In 2011, the manual observation data set of standard meteorological field of Qilian station was used to observe various meteorological elements at 8:00, 14:00 and 20:00 every day. 2. Data content Data content includes dry bulb temperature, wet bulb temperature, maximum temperature, minimum temperature, surface temperature (0cm), shallow surface temperature (5cm, 10cm, 15cm, 20cm), maximum ground temperature and minimum ground temperature. 3. Time and space Geographic coordinates: longitude: 99.9e; latitude: 38.3n; altitude: 2980m
2020-03-11
Contact Support
Links
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved
| No.11010502040845
Tech Support: westdc.cn