Current Browsing: Topography


Digital elevation slope of Heihe river basin (2013-2016)

Two sets of grid data, aster GDEM data with a resolution of 30 meters and SRTM data with a resolution of 90 meters provided by the data management center of Heihe project, as well as point data from multiple sources, are used. By using the HASM scaling algorithm, the grid data of different sources and different precision are fused with the elevation point data to obtain the high precision slope data of Heihe River Basin. First of all, the accuracy of two groups of grid data is verified by using various point data. According to the results of accuracy verification, different grid data are used as the trend surface of data fusion in different regions. The residuals of various point data and trend surface are calculated, and the residual surface is obtained by interpolation with HASM algorithm, and the trend surface and residual surface are superposed to obtain the final slope surface. The spatial resolution is 500 meters.

2020-03-28

Elevation geomorphology slope direction of Heihe river (2013-2016)

Two sets of grid data, aster GDEM data with a resolution of 30 meters and SRTM data with a resolution of 90 meters provided by the data management center of Heihe project, as well as point data from multiple sources, are used. By using the HASM scaling up algorithm, the grid data of different sources and different precision are fused with the elevation point data to obtain the high precision slope direction data of Heihe River Basin. First of all, the accuracy of two groups of grid data is verified by using various point data. According to the results of accuracy verification, different grid data are used as the trend surface of data fusion in different regions. The residuals of various point data and trend surface are calculated, and the residual surface is obtained by interpolation with HASM algorithm, and the trend surface and residual surface are superposed to obtain the final slope surface. The spatial resolution is 500 meters.

2020-03-28

Soil physical properties - soil bulk density and mechanical composition dataset of Tianlaochi Watershed in Qilian Mountains

A total of 137 soil samples of different vegetation types, different altitudes and different terrains were collected from June 2012 to August 2012. The soil layer of each sample point was divided into three layers of 0-10cm, 10-20cm and 20-30cm, with an altitude of 2700-3500m m. The vegetation types were divided into five types: Picea crassifolia forest, Sabina przewalskii, subalpine scrub meadow, grassland and dry grassland. At the same time of sampling, hand-held GPS is used to record the location information and environmental information of each sampling point, including longitude, latitude, altitude, slope, aspect, terrain curvature, vegetation type, soil thickness, maximum root depth, etc. Soil bulk density: The measurement method of soil bulk density is to put the sample into an envelope and dry it in an oven at 105℃ for 24 hours, then take it out and place it for 30 minutes to weigh. The ratio of the weighing result to the volume of the ring cutter is the soil bulk density, and the unit is g/cm3. Soil mechanical composition: hydrometer method is used to measure the soil mechanical composition, which includes the content of soil sand, silt and clay.

2020-03-15

Elevation data of Antarctic (2003)

This data set provides a 1 km resolution Digital Elevation Model (DEM) of Antarctica. The DEM combines measurements from the European Remote Sensing Satellite-1 (ERS-1) Satellite Radar Altimeter (SRA) and the Ice, Cloud, and land Elevation Satellite (ICESat) Geosciences Laser Altimeter System (GLAS). The ERS-1 data are from two long repeat cycles of 168 days initiated in March 1994, and the GLAS data are from 20 February 2003 through 21 March 2008. The data set is approximately 240 MB comprised of two gridded binary files and two Environment for Visualizing Images (ENVI) header files viewable using ENVI or other similar software packages. The data are available via FTP.

2020-03-13

Elevation dataset of the Third pole (2013)

Digital Elevation Model (DEM) is a kind of solid ground Model that represents the ground Elevation in the form of a set of ordered numerical arrays. The third pole region of40°1′52″N~23°11′59″N、105°43′45″E~61°28′45″E of the roof of the world ecological geographic area,These include the qinghai-tibet plateau, the hengduan mountains, the Himalayas, the Hindu kush mountains and the pamirs plateau.Classified according to:At 4000 m altitude as a benchmark, the fusion of slope, reference mountain integrity and ecological system integrity, the spatial resolution of 0.008 ° x 0.008 °

2020-01-18

Digital elevation model of China (1KM)

DEM is the English abbreviation of Digital Elevation Model, which is the important original data of watershed topography and feature recognition.DEM is based on the principle that the watershed is divided into cells of m rows and n columns, the average elevation of each quadrilateral is calculated, and then the elevation is stored in a two-dimensional matrix.Since DEM data can reflect local topographic features with a certain resolution, a large amount of surface morphology information can be extracted through DEM, which includes slope, slope direction and relationship between cells of watershed grid cells, etc..At the same time, the surface flow path, river network and watershed boundary can be determined according to certain algorithm.Therefore, to extract watershed features from DEM, a good watershed structure pattern is the premise and key of the design algorithm. Elevation data map 1km data formed according to 1:250,000 contour lines and elevation points in China, including DEM, hillshade, Slope and Aspect maps. Data set projection: Two projection methods: Equal Area projection Albers Conical Equal Area (105, 25, 47) Geodetic coordinates WGS84 coordinate system

2019-09-15