Current Browsing: the artificial oasis experimental area in the middle reaches


HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of Daman Superstation, 2015)

This data set contains the observation data of vortex-correlograph in the middle reaches of heihe hydrometeorological observation network from January 1, 2015 to December 31, 2015.The station is located in the daman irrigation district of zhangye city, gansu province.The latitude and longitude of the observation point is 100.37223E, 38.85551N, and the altitude is 1556.06m.The rack height of the vortex correlativity meter is 4.5m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500A) is 17cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.Li7500A of the eddy current system was calibrated from April 12 to 14, and data was missing. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).

2020-04-10

HiWATER: Dataset of Hydrometeorological observation network (eddy covariance system of Daman Superstation, 2016)

This data set contains the observation data of vortex-correlograph in the middle reaches of heihe hydrometeorological observation network from January 1, 2016 to December 31, 2016.The station is located in the daman irrigation district of zhangye city, gansu province.The latitude and longitude of the observation point is 100.37223E, 38.85551N, and the altitude is 1556.06m.The rack height of the vortex correlativity meter is 4.5m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature meter (CSAT3) and CO2/H2O analyzer (Li7500A) is 17cm. The original observation data of the vortex correlativity instrument is 10Hz, and the published data is the 30-minute data processed by Eddypro software. The main processing steps include: outliers, delay time correction, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min pass value output by Eddypro software was also screened :(1) data when instrument error was eliminated;(2) data of 1h before and after precipitation are excluded;(3) remove the data with a missing rate of more than 10% in the original 10Hz data within every 30 minutes;(4) the observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average observation period was 30 minutes, 48 data per day, and the missing data was marked as -6999.Due to the power failure from March 3 to 23, the Li7500A of the vortex system was calibrated from April 17 to 25, and the collector problems from October 10 to 24 and December 19 to 31 led to data loss. The published observational data include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Quality indicator for co2 flux QA_Fc.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, such as 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).

2020-04-10

HiWATER: Dataset of hydro-meteorological observation network (eddy covariance system of Daman superstation, 2017)

The data set contains eddy covariance System observation data of Daman super station which is located in the middle reaches of the Heihe Hydro-meteorological Observation Network from January 1, 2017 to December 31, 2017. The site is located in Daman Irrigation District, Zhangye, Gansu Province, and the underlying surface is corn. The latitude and longitude of the observation point is 100.37223E, 38.85551N, and the altitude is 1556.06m. The mount height of the Eddy Covariance System is 4.5 m, the sampling frequency is 10 Hz, the ultrasonic orientation is positive North, and the distance between the ultrasonic wind speed temperature meter (CSAT3) and the CO2/H2O analyzer (Li7500) is 17 cm. The original observation data of the Eddy Covariance System is 10 Hz, and the released data is a 30-minute data processed by Eddypro software. The main steps of the processing include: outlier eliminating, delay time correction, coordinates rotation (secondary coordinates rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction, etc. Meanwhile, the quality evaluation of each flux value was performed,mainly includes atmospheric stability (Δst) test and turbulence similarity (ITC) test. The 30-min flux value output of Eddypro software was also screened: (1) Data from the instrument error was eliminated; (2) Data obtained with one hour before and after precipitation was removed; (3) Data with a deletion rate greater than 10% of the 10 Hz raw data every 30 minutes was eliminated; (4) Observation data of weak turbulence at night (u* less than 0.1 m/s) was excluded. The average period of observation data is 30 minutes, 48 data per day, and the missing data is marked as -6999. The data of April 3 and 4 was missing due to Li7500 calibration of the eddy system; data from August 29 to September 5 was missing due to collector problem. Published observation data include: Date/Time, wind direction(°), horizontal wind speed(m/s), lateral wind speed standard deviation(m/s), ultrasonic virtual temperature (°C), water vapor density (g/m3), carbon dioxide concentration(mg/m3), friction velocity (m/s), length (m), sensible heat flux(W/m2), latent heat flux (W/m2), carbon dioxide flux (mg/(m2s)), sensible heat flux quality identification QA_Hs, latent heat flux quality identification QA_LE, carbon dioxide flux quality identification QA_Fc. The quality identification of sensible heat, latent heat, and carbon dioxide flux is divided into three levels (quality mark 0: (Δst <30, ITC<30); 1: (Δst <100, ITC<100); the rest is 2). The meaning of the data time, such as 0:30 represents an average data of 0:00-0:30; the data is stored in *.xls format. For hydro-meteorological network or station information, please refer to Liu et al. (2018). For observation data processing, please refer to Liu et al. (2011).

2020-04-10

HiWATER: Dataset of hydrometeorological observation network (an observation system of meteorological elements gradient of Daman superstation, 2013)

This dataset includes data recorded by the Hydrometeorological observation network obtained from an observation system of Meteorological elements gradient of Daman Superstation between 26 September, 2012, and 31 December, 2013. The site (100.372° E, 38.856° N) was located on a cropland (maize surface) in the Daman irrigation, which is near Zhangye city, Gansu Province. The elevation is 1556 m. The installation heights and orientations of different sensors and measured quantities were as follows: air temperature and humidity profile (AV-14TH; 3, 5, 10, 15, 20, 30, and 40 m, towards north), wind speed and direction profile (windsonic; 3, 5, 10, 15, 20, 30, and 40 m, towards north), air pressure (CS100; 2 m), rain gauge (TE525M; 2.5 m, 8 m in west of tower), four-component radiometer (PIR&PSP; 12 m, towards south), two infrared temperature sensors (IRTC3; 12 m, towards south, vertically downward), photosynthetically active radiation (LI190SB; 12 m, towards south, vertically upward; another four photosynthetically active radiation were installed on 28 July, 2013, PQS-1; two above the plants (12 m) and two below the plants (0.3 m), towards south, each with one vertically downward and one vertically upward), soil heat flux (HFP01SC; 3 duplicates with G1 below the vegetation; G2 and G3 between plants, -0.06 m), a TCAV averaging soil thermocouple probe (TCAV; -0.02, -0.04 m), soil temperature profile (AV-10T; 0, -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m), soil moisture profile (CS616; -0.02, -0.04, -0.1, -0.2, -0.4, -0.8, -1.2, and -1.6 m). The observations included the following: air temperature and humidity (Ta_3 m, Ta_5 m, Ta_10 m, Ta_15 m, Ta_20 m, Ta_30 m, and Ta_40 m; RH_3 m, RH_5 m, RH_10 m, RH_15 m, RH_20 m, RH_30 m, and RH_40 m) (℃ and %, respectively), wind speed (Ws_3 m, Ws_5 m, Ws_10 m, Ws_15 m, Ws_20 m, Ws_30 m, and Ws_40 m) (m/s), wind direction (WD_3 m, WD_5 m, WD_10 m, WD_15 m, WD_20 m, WD_30m, and WD_40 m) (°), air pressure (press) (hpa), precipitation (rain) (mm), four-component radiation (DR, incoming shortwave radiation; UR, outgoing shortwave radiation; DLR_Cor, incoming longwave radiation; ULR_Cor, outgoing longwave radiation; Rn, net radiation) (W/m^2), infrared temperature (IRT_1 and IRT_2) (℃), photosynthetically active radiation (PAR) (μmol/ (s m-2)), average soil temperature (TCAV, ℃), soil heat flux (Gs_1, below the vegetation; Gs_2, and Gs_3, between plants) (W/m^2), soil temperature (Ts_0 cm, Ts_2 cm, Ts_4 cm, Ts_10 cm, Ts_20 cm, Ts_40 cm, Ts_80 cm, Ts_120 cm, and Ts_160 cm) (℃), soil moisture (Ms_2 cm, Ms_4 cm, Ms_10 cm, Ms_20 cm, Ms_40 cm, Ms_80 cm, Ms_120 cm, and Ms_160 cm) (%, volumetric water content), above the plants photosynthetically active radiation of upward and downward (PAR_U_up and PAR_U_down) (μmol/ (s m^-2)), and below the plants photosynthetically active radiation of upward and downward (PAR_D_up and PAR_D_down) (μmol/ (s m^-2)). The data processing and quality control steps were as follows: (1) The AWS data were averaged over intervals of 10 min for a total of 144 records per day. The CO2 and H2O density profile data were missing during 15 December, 2012 and 1 April, 2013 because of datalogger malfunction; the wind speed profile data were missing during 29 November, 2012 and 22 December, 2012 because the malfunction of sensors; the wind speed/direction data at 5 m height were missing from 26 October, 2012 to 27 November, 2012, and from 9 December, 2012 to 23 December, 2012 because of the sensor malfunction. The missing data were denoted by -6999. (2) Data in duplicate records were rejected. (3) Unphysical data were rejected. (4) The data marked in red are problematic data. (5) The format of the date and time was unified, and the date and time were collected in the same column, for example, date and time: 2013-6-10 10:30. (6) Finally, the naming convention was AWS+ site no. Moreover, suspicious data were marked in red. For information of hydrometeorological network or station, please refer to Liu et al.(2018), and for observation data processing, please refer to Liu et al.(2011).

2020-04-10

HiWATER: Dataset of hydrometeorological observation network (an observation system of meteorological elements gradient of Daman superstation, 2014)

This data set contains the data of meteorological element gradient observation system of dashman superstation in the middle reaches of heihe hydrometeorological observation network from January 1, 2014 to December 31, 2014.The station is located in the farmland of daman irrigation district of zhangye city, gansu province.The longitude and latitude of the observation point are 100.3722e, 38.8555n and 1556m above sea level.The wind speed/direction, air temperature and relative humidity sensors are located at 3m, 5m, 10m, 15m, 20m, 30m and 40m respectively, with a total of 7 layers, facing due north.The barometer is installed at 2m;The tilting bucket rain gauge was installed at about 8m on the west side of the tower, with a height of 2.5m;The four-component radiometer is installed at 12m, facing due south;Two infrared thermometers are installed at 12m, facing due south and the probe facing vertically downward.Soil heat flow plate (self-calibration formal) (3 pieces) were buried in the ground 6cm in turn, 2m away from the tower body due south, two of which (Gs_2 and Gs_3) were buried between the trees, and one (Gs_1) was buried under the plants.The mean soil temperature sensor TCAV is buried 2cm and 4cm underground, facing due south and 2m away from the tower body.The soil temperature probe is buried at 0cm of the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil water sensor is buried 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The photosynthetic effective radiometer is installed at 12m with the probe facing vertically upward.Four other photosynthetically active radiometers were installed above and inside the canopy, 12m above the canopy (one probe vertically up and one probe vertically down), and 0.3m above the canopy (one probe vertically up and one probe vertically down), facing due south. The observation items are: wind speed (WS_3m, WS_5m, WS_10m, WS_15m, WS_20m, WS_30m, WS_40m) (unit: m/s), wind direction (WD_3m, WD_5m, WD_10m, WD_15m, WD_20m, WD_30m, WD_40m) (unit:Air temperature and humidity (Ta_3m, Ta_5m, Ta_10m, Ta_15m, Ta_20m, Ta_30m, Ta_40m and RH_3m, RH_5m, RH_10m, RH_15m, RH_20m, RH_30m, RH_40m) (unit: Celsius, percentage), air pressure (Press) (unit: hpa), precipitation (Rain) (unit: mm), four-component radiation (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit:Watts/m2), surface radiant temperature (IRT_1, IRT_2) (unit: Celsius), average soil temperature (TCAV) (unit: Celsius), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts/m2), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit:Soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm)Mmol/m s) and the upward and downward photosynthetic effective radiation (PAR_D_up, PAR_D_down) under the canopy (in mmol/m s). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;Non-soil data (wind speed, wind direction, air temperature and humidity, air pressure, precipitation, four-component radiation, surface radiation temperature and photosynthetically active radiation) were missing between June 20, 2014 and June 27, 2014 due to the data collector.The wind speed and direction of 3m were between January 17th, 2014 -- January 21st, 2014 and February 10th, 2014 -- February 2nd, 2014.5m wind speed and direction between 2014.2.10-3.2due to sensor problems, data is missing;The soil temperature was between October, 2014 and December, 2014. Due to the problem of the data collector, the data was missing.(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: 2014-6-1010:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Liu et al.(2018), and for observation data processing, please refer to Liu et al.(2011).

2020-04-10

HiWATER: Dataset of hydrometeorological observation network (an observation system of meteorological elements gradient of Daman superstation, 2015)

This data set contains the data of meteorological element gradient observation system of the middle reaches of heihe hydrometeorological observation network from January 1, 2015 to December 31, 2015.The station is located in the farmland of daman irrigation district of zhangye city, gansu province.The longitude and latitude of the observation point are 100.3722e, 38.8555n and 1556m above sea level.The wind speed/direction, air temperature and relative humidity sensors are located at 3m, 5m, 10m, 15m, 20m, 30m and 40m respectively, with a total of 7 layers, facing due north.The barometer is installed at 2m;The tilting bucket rain gauge was installed at about 8m on the west side of the tower, with a height of 2.5m;The four-component radiometer is installed at 12m, facing due south;Two infrared thermometers are installed at 12m, facing due south and the probe facing vertically downward.Soil heat flow plate (self-calibration formal) (3 pieces) were buried in the ground 6cm in turn, 2m away from the tower body due south, two of which (Gs_2 and Gs_3) were buried between the trees, and one (Gs_1) was buried under the plants.The mean soil temperature sensor TCAV is buried 2cm and 4cm underground, facing due south and 2m away from the tower body.The soil temperature probe is buried at 0cm of the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil water sensor is buried 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The photosynthetic effective radiometer is installed at 12m with the probe facing vertically upward.Four other photosynthetically active radiometers were installed above and inside the canopy, 12m above the canopy (one probe vertically up and one probe vertically down), and 0.3m above the canopy (one probe vertically up and one probe vertically down), facing due south. The observation items are: wind speed (WS_3m, WS_5m, WS_10m, WS_15m, WS_20m, WS_30m, WS_40m) (unit: m/s), wind direction (WD_3m, WD_5m, WD_10m, WD_15m, WD_20m, WD_30m, WD_40m) (unit:Air temperature and humidity (Ta_3m, Ta_5m, Ta_10m, Ta_15m, Ta_20m, Ta_30m, Ta_40m and RH_3m, RH_5m, RH_10m, RH_15m, RH_20m, RH_30m, RH_40m) (unit: Celsius, percentage), air pressure (Press) (unit: hpa), precipitation (Rain) (unit: mm), four-component radiation (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit:Watts/m2), surface radiant temperature (IRT_1, IRT_2) (unit: Celsius), average soil temperature (TCAV) (unit: Celsius), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts/m2), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit:Soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm)Mmol/m s) and the upward and downward photosynthetic effective radiation (PAR_D_up, PAR_D_down) under the canopy (in mmol/m s). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;The wind speed and direction of 3m and 5m were missing due to sensor problems between November 16 and November 25, 2015;(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: June 10, 2015, 10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).

2020-04-10

HiWATER: Dataset of hydrometeorological observation network (an observation system of meteorological elements gradient of Daman Superstation, 2016)

This data set contains the data of meteorological element gradient observation system of dashman superstation in the middle reaches of heihe hydrometeorological observation network from January 1, 2016 to December 31, 2016.The station is located in the farmland of daman irrigation district of zhangye city, gansu province.The longitude and latitude of the observation point are 100.3722e, 38.8555n and 1556m above sea level.The wind speed/direction, air temperature and relative humidity sensors are located at 3m, 5m, 10m, 15m, 20m, 30m and 40m respectively, with a total of 7 layers, facing due north.The barometer is installed at 2m;The tilting bucket rain gauge was installed at about 8m on the west side of the tower, with a height of 2.5m;The four-component radiometer is installed at 12m, facing due south;Two infrared thermometers are installed at 12m, facing due south and the probe facing vertically downward.Soil heat flow plate (self-calibration formal) (3 pieces) were buried in the ground 6cm in turn, 2m away from the tower body due south, two of which (Gs_2 and Gs_3) were buried between the trees, and one (Gs_1) was buried under the plants.The mean soil temperature sensor TCAV is buried 2cm and 4cm underground, facing due south and 2m away from the tower body.The soil temperature probe is buried at 0cm of the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil water sensor is buried 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The photosynthetic effective radiometer is installed at 12m with the probe facing vertically upward.Four other photosynthetically active radiometers were installed above and inside the canopy, 12m above the canopy (one probe vertically up and one probe vertically down), and 0.3m above the canopy (one probe vertically up and one probe vertically down), facing due south. The observation items are: wind speed (WS_3m, WS_5m, WS_10m, WS_15m, WS_20m, WS_30m, WS_40m) (unit: m/s), wind direction (WD_3m, WD_5m, WD_10m, WD_15m, WD_20m, WD_30m, WD_40m) (unit:Air temperature and humidity (Ta_3m, Ta_5m, Ta_10m, Ta_15m, Ta_20m, Ta_30m, Ta_40m and RH_3m, RH_5m, RH_10m, RH_15m, RH_20m, RH_30m, RH_40m) (unit: Celsius, percentage), air pressure (Press) (unit: hpa), precipitation (Rain) (unit: mm), four-component radiation (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit:Watts/m2), surface radiant temperature (IRT_1, IRT_2) (unit: Celsius), average soil temperature (TCAV) (unit: Celsius), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts/m2), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit:Soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm)Mmol/m s) and the upward and downward photosynthetic effective radiation (PAR_D_up, PAR_D_down) under the canopy (in mmol/m s). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;The sensor in the soil part was adjusted and the data could not be used;(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: 2016-6-10-10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).

2020-04-10

HiWATER:Dataset of hydrometeorological observation network (an observation system of meteorological elements gradient of Daman Superstation, 2017)

This data set contains the data of meteorological element gradient observation system of dashman superstation in the middle reaches of heihe hydrometeorological observation network from January 1, 2017 to December 31, 2017.The station is located in the farmland of daman irrigation district of zhangye city, gansu province.The longitude and latitude of the observation point are 100.3722e, 38.8555n and 1556m above sea level.The wind speed/direction, air temperature and relative humidity sensors are located at 3m, 5m, 10m, 15m, 20m, 30m and 40m respectively, with a total of 7 layers, facing due north.The barometer is installed at 2m;The tilting bucket rain gauge was installed at about 8m on the west side of the tower, with a height of 2.5m;The four-component radiometer is installed at 12m, facing due south;Two infrared thermometers are installed at 12m, facing due south and the probe facing vertically downward.Soil heat flow plate (self-calibration formal) (3 pieces) were buried in the ground 6cm in turn, 2m away from the tower body due south, two of which (Gs_2 and Gs_3) were buried between the trees, and one (Gs_1) was buried under the plants.The mean soil temperature sensor TCAV is buried 2cm and 4cm underground, facing due south and 2m away from the tower body.The soil temperature probe is buried at 0cm of the surface and 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The soil water sensor is buried 2cm, 4cm, 10cm, 20cm, 40cm, 80cm, 120cm and 160cm underground, 2m to the south of the meteorological tower.The photosynthetic effective radiometer is installed at 12m with the probe facing vertically upward.Four other photosynthetically active radiometers were installed above and inside the canopy, 12m above the canopy (one probe vertically up and one probe vertically down), and 0.3m above the canopy (one probe vertically up and one probe vertically down), facing due south. The observation items are: wind speed (WS_3m, WS_5m, WS_10m, WS_15m, WS_20m, WS_30m, WS_40m) (unit: m/s), wind direction (WD_3m, WD_5m, WD_10m, WD_15m, WD_20m, WD_30m, WD_40m) (unit:Air temperature and humidity (Ta_3m, Ta_5m, Ta_10m, Ta_15m, Ta_20m, Ta_30m, Ta_40m and RH_3m, RH_5m, RH_10m, RH_15m, RH_20m, RH_30m, RH_40m) (unit: Celsius, percentage), air pressure (Press) (unit: hpa), precipitation (Rain) (unit: mm), four-component radiation (DR, UR, DLR_Cor, ULR_Cor, Rn) (unit:Watts/m2), surface radiant temperature (IRT_1, IRT_2) (unit: Celsius), average soil temperature (TCAV) (unit: Celsius), soil heat flux (Gs_1, Gs_2, Gs_3) (unit: watts/m2), soil moisture (Ms_2cm, Ms_4cm, Ms_10cm, Ms_20cm, Ms_40cm, Ms_80cm, Ms_120cm, Ms_160cm) (unit:Soil temperature (Ts_0cm, Ts_2cm, Ts_4cm, Ts_10cm, Ts_20cm, Ts_40cm, Ts_80cm, Ts_120cm, Ts_160cm)Mmol/m s) and the upward and downward photosynthetic effective radiation (PAR_D_up, PAR_D_down) under the canopy (in mmol/m s). Processing and quality control of observed data :(1) ensure 144 pieces of data every day (every 10min), and mark by -6999 in case of data missing;Due to sensor problems, the soil heat flux G2 was wrong;Due to problems with the collector, the meteorological data were wrong;Part of soil data was wrong due to collector problem;(2) excluding the time with duplicate records;(3) data that obviously exceeds the physical significance or the range of the instrument is deleted;(4) the part marked with red letter in the data is the data in question;(5) date and time have the same format, and date and time are in the same column.For example, the time is: 2017-6-10:10:30;(6) the naming rule is: AWS+ site name. For information of hydrometeorological network or station, please refer to Liu et al. (2018), and for observation data processing, please refer to Liu et al. (2011).

2020-04-10

HiWATER: Dataset of hydrometeorological observhtion network (eddy covariance system of Daman Superstation Upper, 2013)

This dataset contains the flux measurements from the Daman superstation upper eddy covariance system (EC) in the middle reaches of the Heihe hydrometeorological observation network from 15 September, 2012, to 31 December, 2013. The site (100.372° E, 38.856° N) was located in the maize surface, near Zhangye city in Gansu Province. The elevation is 1556 m. The EC was installed at a height of 34 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. The raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), as proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened using a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.12 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Data during 26 May to 30 May and 13 July to 24 September, 2013 were missing due to the sensor calibration and maintained of CO2/H2O gas analyzer. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. For information of hydrometeorological network or station, please refer to Liu et al.(2018), and for observation data processing, please refer to Liu et al.(2011).

2020-04-10

HiWATER: Dataset of hydrometeorological observation network (eddy covariance system of Daman Superstation Lower, 2013)

This dataset contains the flux measurements from the Daman superstation lower eddy covariance system (EC) in the middle reaches of the Heihe hydrometeorological observation network from 15 September, 2012, to 31 December, 2013. The site (100.372° E, 38.856° N) was located in the maize surface, near Zhangye city in Gansu Province. The elevation is 1556 m. The EC was installed at a height of 4.5 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.17 m. The raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), as proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Data during 26 May to 30 May, 2013 were missing due to the sensor calibration of CO2/H2O gas analyzer. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. For more information, please refer to Liu et al. (2018) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.

2020-04-10