The No. 5 hydrological section is located at Ban Bridge (100.276° E, 39.259° N, 1398 m) in the midstream of the Heihe River Basin, Zhangye city, Gansu Province. The dataset contains observations recorded by the No.5 hydrological section from 19 June, 2012, to 10 August, 2012. The width of this section is 270 meters. The water level was measured using an HOBO pressure range and the discharge was measured using cross-section reconnaissance by the StreamPro ADCP. The dataset includes the following parameters: water level (recorded every 30 minutes) and discharge. The missing and incorrect (outside the normal range) data were replaced with -6999. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), He et al. (2016) (for data processing) in the Citation section.
2019-09-13
On 29 June 2012 (UTC+8), a CASI/SASI sensor carried by the Harbin Y-12 aircraft was used in a visible near Infrared hyperspectral airborne remote sensing experiment, which is located in the observation experimental area (30×30 km). The relative flight altitude is 3500 meters(an elevation of 3500 meters), The wavelength of CASI and SASI is 380-1050 nm and 950-2450 nm, respectively. The spatial resolution of CASI and SASI is 1 m and 2.4 m, respectively. Through the ground sample points and atmospheric data, the data are recorded in reflectance processed by geometric correction and atmospheric correction based on 6S model.
2019-09-13
The albedo product was obtained based on the visible and near-infrared hyperspectral radiometer (29 June, 2012) which covered the artificial oasis eco-hydrology experimental area (5.5 km*5.5 km)with a 5 m spatial resolution.
2019-09-13
This dataset contains the flux measurements from site No.6 eddy covariance system (EC) in the flux observation matrix from 28 May to 21 September, 2012. The site (100.35970° E, 38.87116° N) was located in a cropland (maize surface) in Yingke irrigation district, which is near Zhangye, Gansu Province. The elevation is 1562.97 m. The EC was installed at a height of 4.6 m; the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (CSAT3&Li7500A) was 0.15 m. Raw data acquired at 10 Hz were processed using the Edire post-processing software (University of Edinburgh, http://www.geos.ed.ac.uk/abs/research/micromet/EdiRe/), including spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. Moreover, the observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), which was proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), representing high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened in a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day; the missing data were replaced with -6999. Moreover, suspicious data were marked in red. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xlsx format. For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Xu et al. (2013) (for data processing) in the Citation section.
2019-09-13
The No. 8 hydrological section is located at Gaotai Heihe River Bridge (N39° 23′22.93 ″, E 99° 49′37.29″, 1347 m a.s.l.) in the midstream of the Heihe River Basin, Zhangye city, Gansu Province. The dataset contains observations recorded by the No.8 hydrological section from 17 June, 2012, to 31 December, 2013. The width of this section is 210 meters. The water level was measured using an SR50 ultrasonic range and the discharge was measured using cross-section reconnaissance by the StreamPro ADCP. The dataset includes the following parameters: water level (recorded every 30 minutes) and discharge. The missing and incorrect (outside the normal range) data were replaced with -6999. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), He et al. (2016) (for data processing) in the Citation section.
2019-09-13
This dataset includes two reference images. The first one is before the calibration and validation experiment and the second one is during the calibration and validation experiment. The first image was shoot and mosaicked by CCD camera on 8 November, 2011. It was mainly used to design the experiment in the middle stream. The spatial resolution is 0.3 m for raw image and 0.5 m for the mosaicked image. The second reference image is CASI image shoot on 29 June, 2012. This image is mainly used to crop structure mapping in the experiment area. The spatial resolution is 0.3 m for raw image and 0.5 m for the mosaicked image. Data format:GeoTIFF Projection:The 2000 national geodetic coordinate system
2019-09-12
On 19 August 2012, a Leica ALS70 airborne laser scanner boarded on the Y-12 aircraft was used to obtain the Lidar point cloud data. Leica ALS70 airborne laser scanner has unlimited numbers of returns intensities measurements including the first, second, third return intensities. The wavelength of laser light is 1064 nm. The absolute flight altitude is 2900 m with the point cloud density 1 point per square meter. Aerial LiDAR-DEM was obtained through parameter calibration, automatic classification of point cloud density and manual editing.
2019-09-12
The aim of the simultaneous observation of river surface temperature is obtaining the river surface temperature of different places, while the sensor of thermal infrared go into the experimental areas of artificial oases eco-hydrology on the middle stream. All the river surface temperature data will be used for validation of the retrieved river surface temperature from thermal infrared sensor and the analysis of the scale effect of the river surface temperature, and finally serve for the validation of the plausibility checks of the surface temperature product from remote sensing. 1. Observation sites and other details Ten river sections were chosen to observe surface temperature simultaneously in the midstream of Heihe River Basin on 3 July and 4 July, 2012, including Sunan Bridge, Binhe new area, Heihe Bridge, Railway Bridge, Wujiang Bridge, Gaoya Hydrologic Station, Banqiao, Pingchuan Bridge, Yi’s Village, Liu’s Bridge. Self-recording point thermometers (observed once every 6 seconds) were used in Railway Bridge and Gaoya Hydrologic Station while handheld infrared thermometers (observed once of the river section temperature for every 15 minutes) were used in other eight places. 2. Instrument parameters and calibration The field of view of the self-recording point thermometer and the handheld infrared thermometer are 10 and 1 degree, respectively. The emissivity of the latter was assumed to be 0.95. All instruments were calibrated on 6 July, 2012 using black body during observation. 3. Data storage All the observation data were stored in excel.
2019-09-12
This dataset contains the flux measurements from the Zhangye wetland station eddy covariance system (EC) in the middle reaches of the Heihe hydrometeorological observation network from 15 September, 2012, to 21 November, 2013. The site (100.446° E, 38.975° N) was located in the desert steppe surface, near Zhangye city in Gansu Province. The elevation is 1460 m. The EC was installed at a height of 5.2 m, and the sampling rate was 10 Hz. The sonic anemometer faced north, and the separation distance between the sonic anemometer and the CO2/H2O gas analyzer (Gill&Li7500A) was 0.25 m. The raw data acquired at 10 Hz were processed using the Eddypro post-processing software (Li-Cor Company, http://www.licor.com/env/products/eddy_covariance/software.html), including the spike detection, lag correction of H2O/CO2 relative to the vertical wind component, sonic virtual temperature correction, coordinate rotation (2-D rotation), corrections for density fluctuation (Webb-Pearman-Leuning correction), and frequency response correction. The EC data were subsequently averaged over 30 min periods. The observation data quality was divided into three classes according to the quality assessment method of stationarity (Δst) and the integral turbulent characteristics test (ITC), as proposed by Foken and Wichura [1996]: class 1 (level 0: Δst<30 and ITC<30), class 2 (level 1: Δst<100 and ITC<100), and class 3 (level 2: Δst>100 and ITC>100), which represent high-, medium-, and low-quality data, respectively. In addition to the above processing steps, the half-hourly flux data were screened using a four-step procedure: (1) data from periods of sensor malfunction were rejected; (2) data collected before or after 1 h of precipitation were rejected; (3) incomplete 30 min data were rejected when the missing data constituted more than 3% of the 30 min raw record; and (4) data were rejected at night when the friction velocity (u*) was less than 0.1 m/s. There were 48 records per day, and the missing data were replaced with -6999. Suspicious data were marked in red. Due to the calibration of CO2/H2O gas analyzer and CF card storage problem, data during 28 May to 30 May, and 21 November to 31 December, 2013 were missing. The released data contained the following variables: data/time, wind direction (Wdir, °), wind speed (Wnd, m/s), the standard deviation of the lateral wind (Std_Uy, m/s), virtual temperature (Tv, ℃), H2O mass density (H2O, g/m^3), CO2 mass density (CO2, mg/m^3), friction velocity (ustar, m/s), stability (z/L), sensible heat flux (Hs, W/m^2), latent heat flux (LE, W/m^2), carbon dioxide flux (Fc, mg/ (m^2s)), quality assessment of the sensible heat flux (QA_Hs), quality assessment of the latent heat flux (QA_LE), and quality assessment of the carbon flux (QA_Fc). In this dataset, the time of 0:30 corresponds to the average data for the period between 0:00 and 0:30; the data were stored in *.xls format. For more information, please refer to Li et al. (2013) (for hydrometeorological observation network or sites information), Liu et al. (2011) (for data processing) in the Citation section.
2019-09-12
During the period of middle stream experiment in 2012, closed chamber and gas chromatography method was used to measure soil respiration of different land surface, including farmland, orchard, wetland, sparse grassland (Huazhaizi), Gobi, desert. Instrument: Assimilation Chamber Measuring method: Assimilation chamber consists of two parts: the base and the box. Base made of PVC material, the bottom buried in the soil. The box is made of stainless steel cubes, with one open side. When measuring the box cover on the base, air in the box was sampled using injector. The extracted air was injected into the gas sampling bag, and shipped back to the laboratory analysis of the concentration of CO2 by gas chromatography in Institute of Botany, The Chinese Academy of Sciences. Using the difference of concentration of CO2 at two times to calculate soil respiration. Each measurement points are located three repeat. After five minutes sealed box cover start mining the 1st sample, and then taken once every sample interval of 10 minutes, four times in total mining. Date content: Data content includes header information and once every 10 days three times repeated observations and the average of the three times. Measuring location: Gobi (Bajitan Gobi station), Wetland (Zhangye wetland Station), Sparse grassland (Huazhaizi desert steppe Station), Desert (Shenshawo sandy desert Station), Orchard (site No.17 eddy covariance system), Maize Farmland (Daman Superstation) Measuring time: 16-6-2012, 28-6-2012, 9-7-2012, 18-7-2012, 30-7-2012, 11-8-2012, 21-8-2012, 2-9-2012, 13-9-2012, 22-9-2012 (UTC+8).
2019-09-12
Contact Support
Northwest Institute of Eco-Environment and Resources, CAS 0931-4967287 poles@itpcas.ac.cnLinks
National Tibetan Plateau Data CenterFollow Us
A Big Earth Data Platform for Three Poles © 2018-2020 No.05000491 | All Rights Reserved | No.11010502040845
Tech Support: westdc.cn