HiWATER: The multi-scale observation experiment on evapotranspiration over heterogeneous land surfaces (MUSOEXE-12)-Flux Observation Matrix (stable isotopic observation) (2012)

HiWATER: The multi-scale observation experiment on evapotranspiration over heterogeneous land surfaces (MUSOEXE-12)-Flux Observation Matrix (stable isotopic observation) (2012)


This dataset includes 5 sub-datasets obtained from measurements in the flux observing matrix at observing site No.15 (the Daman superstation) and 13. Specifically, the sub-datasets include the following: (1) a dataset that contains atmospheric water vapor D/H and 18O/16O isotopic and flux ratio measurements from site No.15 from 27 May to 21 September in 2012, (2) a dataset that contains D/H and 18O/16O isotopic ratios of water in soil and in corn xylem at site No.15 from 27 May to 21 September 2012, (3) a dataset that contains atmospheric water vapor D/H and 18O/16O isotopic ratios at site No.13 when airborne surveys occurred, and (4) a dataset that contains D/H and 18O/16O isotopic ratios of water in soil and in corn xylem at sites No.13 and 15 when airborne surveys occurred, (5) a dataset that contains the ratios of evaporation and transpiration to evapotranpiration at site No.15. The experiment area was located in a corn cropland in the Daman irrigation district of Zhangye, Gansu Province, China. The positions of observing sites No.15 and 13 were 100.3722° E, 38.8555° N and 100.3785° E, 38.8607° N, respectively, with an elevation of 1552.75 m above sea level. The atmospheric water vapor D/H and 18O/16O isotopic and flux ratios at site No.15 were continuously measured using an in situ observation system. The system consisted of an H218O, HDO and H2O analyzer (Model L1102-i, Picarro Inc.), a CTC HTC-Pal liquid auto sampler (LEAP Technologies) and a multichannel solenoid valve (Model EMT2SD8 MWE, Valco Instruments CO. Inc.). The heights of the two intakes were 0.5 and 1.5 m above the corn canopy. The water vapor D/H and 18O/16O isotopic ratio analyzer recorded signals at 0.2 Hz; data were recorded for 2 minutes per intake. The data were block-averaged to hourly intervals. The sampling frequency of soil and xylem at site No. 15 was 1-3 days. The atmospheric water vapor D/H and 18O/16O isotopic and flux ratios at site No.13 were measured using a cold traps/mass spectrometer. The sampling frequency of atmospheric water vapor, soil water and xylem water at site No.13 was the same as that of the airborne surveys. Briefly, the Picarro analyzer measurements were calibrated during every 3 h switching cycle using a two-point concentration interpolation procedure in which the water vapor mixing ratio was dynamically controlled to track the ambient water vapor mixing ratio. Possible delta stretching effects were not considered. A schematic diagram of the Picarro analyzer and its operation principles and calibration procedure are described elsewhere in the literature (Huang et al., 2014; Wen et al. 2008, 2012).

The dataset of atmospheric water vapor D/H and 18O/16O isotopic and flux ratios at site No.15 includes the following variables: Timestamp (time, timestamp without time zone), Number (available record number), δD for r1 (δD for the lower intake, ‰), δD for r2 (δD for the higher intake, ‰), δ18O for r1 (δ18O for the lower intake, ‰), δ18O for r2 (δ18O for the higher intake, ‰), vapor mixing ratio for r1 (vapor mixing ratio for the lower intake, mmol/mol), vapor mixing ratio for r2 (vapor mixing ratio for the higher intake, mmol/mol), δET_D (δD of evapotranspiration, ‰), and δET_18O (δ18O of evapotranspiration, ‰). The dataset of D/H and 18O/16O isotopic ratios of water in soil and in corn xylem at site No.15 includes the following variables: Timestamp (time, timestamp without time zone), Remark (treatment: soil without mulch (Ld)=1; soil with mulch (Fm)=2; soil with male corns (F)=3; Xylem=4), δD (‰), and δ18O (‰). The dataset for the ratio of soil evaporation and transpiration to the evapotranspiration at site 15 includes the following variables: Timestamp (time, timestamp without time zone), E/ET (ratio of soil evaporation to the evapotranspiration, %), and T/ET (ratio of transpiration to the evapotranspiration, %). The mean (±one standard deviation) ratio of transpiration to evapotranspiration was 86.7±5.2% (the range was 71.3 to 96.0%). The mean (±one standard deviation) ratio of soil evaporation to the evapotranspiration was 13.3 ±5.2% (the range was 4.0 to 28.7%).

The dataset of atmospheric water vapor D/H and 18O/16O isotopic ratio at site No. 13 when airborne surveys occurred includes the following variables: Timestamp1 (start time, timestamp without time zone), Timetamp2 (end time, timestamp without time zone), Height (observation height, cm), δD (‰), and δ18O (‰). The dataset of D/H and 18O/16O isotopic ratios of water in soil and in corn xylem at sites No. 13 and 15 when airborne surveys occurred include the following variables, Timestamp (time, timestamp without time zone), Remark (treatment: soil without mulch (Ld)=1; soil with mulch (Fm)=2; Xylem=4), δD (‰), δ18O (‰), and Location (observing site 13 or 15) . The missing measurements were replaced with -6999.

For more information, please refer to Liu et al. (2016) (for multi-scale observation experiment or sites information), Wen et al. (2016) (for data processing) in the Citation section.


Data Citations Data citation guideline What's data citation?
Cite as:

Wen, X., Liu, S., Li, X. (2016). HiWATER: The multi-scale observation experiment on evapotranspiration over heterogeneous land surfaces (MUSOEXE-12)-Flux Observation Matrix (stable isotopic observation) (2012). A Big Earth Data Platform for Three Poles, DOI: 10.3972/hiwater.108.2013.db. CSTR: 18406.11.hiwater.108.2013.db. (Download the reference: RIS | Bibtex )

Related Literatures:

1. Li, X., Liu, S.M., Xiao, Q., Ma, M.G., Jin, R., Che, T., Wang, W.Z., Hu, X.L., Xu, Z.W., Wen, J.G., Wang, L.X. (2017). A multiscale dataset for understanding complex eco-hydrological processes in a heterogeneous oasis system. Scientific Data, 4, 170083. doi:10.1038/sdata.2017.83.( View Details | Download | Bibtex)

Using this data, the data citation is required to be referenced and the related literatures are suggested to be cited.


References literature

1.Yang B, Wen XF, Sun XM. Irrigation depth far exceeds water uptake depth in an oasis cropland in the middle reaches of Heihe River Basin. Scientific reports, 2015, 15206 (5), doi:10.1038/srep15206. (View Details | Download )

2.Liu, S.M., Xu, Z.W., Song, L.S., Zhao, Q.Y., Ge, Y., Xu, T.R., Ma, Y.F., Zhu, Z.L., Jia, Z.Z., &Zhang, F. (2016). Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agricultural and Forest Meteorology, 230-231, 97-113. (View Details | Download )

3.Yang, Y., D. Long, H. Guan, W. Liang, C. Simmons, and O. Batelaan. Comparison of three dual-source remote sensing evapotranspiration models during the MUSOEXE-12 campaign: Revisit of model physics, Water Resour. Res., 2015,51, doi:10.1002/2014WR015619. (View Details )

4.Xu, Z.W., Ma, Y.F., Liu, S.M., Shi, S.J., &Wang, J.M. (2017). Assessment of the energy balance closure under advective conditions and its impact using remote sensing data. Journal of Applied Meteorology and Climatology, 56, 127-140. (View Details | Download )

5.Li Xin, Liu Shaomin, Ma Mingguo, Xiao Qing, Liu Qinhuo, Jin Rui, Che Tao. HiWATER: An Integrated Remote Sensing Experiment on Hydrological and Ecological Processes in the Heihe River Basin. Advances in Earth Science, 2012, 27(5): 481-498. (View Details | Download )

6.Song, L.S., Liu, S.M., Zhang, X., Zhou, J., & Li, M.S. (2015). Estimating and Validating Soil Evaporation and Crop Transpiration During the HiWATER-MUSOEXE. IEEE Geoscience and Remote Sensing Letters, 12(2), 334-338. (View Details | Download )

7.Huang LJ, Wen, XF. Temporal variations of atmospheric water vapor δD and δ18O above an arid artificial oasis cropland in the Heihe River Basin. Journal of Geophysical Research–Atmospheres, 2014, 119(19), 11456- 11476. doi:10.1002/2014JD021891 (View Details | Download )

8.Li X, Cheng GD, Liu SM, Xiao Q, Ma MG, Jin R, Che T, Liu QH, Wang WZ, Qi Y, Wen JG, Li HY, Zhu GF, Guo JW, Ran YH, Wang SG, Zhu ZL, Zhou J, Hu XL, Xu ZW. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design. Bulletin of the American Meteorological Society, 2013, 94(8): 1145-1160, 10.1175/BAMS-D-12-00154.1. (View Details )


Support Program

National Natural Science Foundation of China (No:91125002)

Copyright & License

To respect the intellectual property rights, protect the rights of data authors, expand services of the data center, and evaluate the application potential of data, data users should clearly indicate the source of the data and the author of the data in the research results generated by using the data (including published papers, articles, data products, and unpublished research reports, data products and other results). For re-posting (second or multiple releases) data, the author must also indicate the source of the original data.


License: This work is licensed under an Attribution 4.0 International (CC BY 4.0)


Related Resources
Comments

Current page automatically show English comments Show comments in all languages

Download Follow
Keywords
Geographic coverage
East: 100.37 West: 100.37
South: 38.86 North: 38.86
Details
  • File size: 14 MB
  • Views: 17698
  • Downloads: 83
  • Access: Requestable
  • Temporal coverage: 2012-06-10 To 2012-10-05
  • Updated time: 2021-04-20
Contacts
: WEN Xuefa   LIU Shaomin   LI Xin  

Distributor: A Big Earth Data Platform for Three Poles

Email: poles@itpcas.ac.cn

Export metadata