Observation of water and heat flux in alpine meadow ecosystem-eddy covariance system of Yakou station (2015-2017)

Observation of water and heat flux in alpine meadow ecosystem-eddy covariance system of Yakou station (2015-2017)


This data set contains the data of eddy correlation instrument observation in the upstream pass station of heihe hydrological and meteorological observation network on January 1, 2015 and December 31, 2017.The site is located in qilian county, qinghai province.The longitude and latitude of the observation point are 100.2421, 38.0142N and 4148 m above sea level.The height of the vortex correlation instrument is 3.2m, the sampling frequency is 10Hz, the ultrasonic orientation is due north, and the distance between the ultrasonic wind speed and temperature instrument (CSAT3) and the CO2/H2O analyzer (Li7500A) is 15cm.

The original observation data of the vortex correlator is 10Hz, and the published data are the 30-minute data processed by Eddypro. The main steps of the processing include: elimination of outliers, correction of delay time, coordinate rotation (quadratic coordinate rotation), frequency response correction, ultrasonic virtual temperature correction and density (WPL) correction, etc.Quality assessment for each intercompared to at the same time, mainly is the atmospheric stability (Δ st) and turbulent characteristics of similarity (ITC) test.The 30min flux value output by Eddypro software was also screened :(1) to eliminate the data in case of instrument error;(2) data of 1h before and after precipitation were removed;(3) data with a miss rate of more than 10% per 30min in 10Hz original data were excluded;(4) observation data of weak turbulence at night (u* less than 0.1m/s) were excluded.The average period of observation data was 30 minutes, with 48 data in a day, and the missing data was marked as -6999.Suspect data caused by instrument drift and other reasons are marked in red font.The eddy current correlator will be short of power at night in winter, which leads to the loss of data.When 10Hz data is missing due to the storage card data problem (1.12-3.14,10.7-12.31), the data is replaced by the 30min flux data output by the collector.

The published observations include:Date/Time for the Date/Time, wind Wdir (°), Wnd horizontal wind speed (m/s), standard deviation Std_Uy lateral wind speed (m/s), ultrasonic virtual temperature Tv (℃), the water vapor density H2O (g/m3), carbon dioxide concentration CO2 (mg/m3), friction velocity Ustar) (m/s), Mr. Hoff length L (m), sensible heat flux Hs (W/m2), latent heat flux LE (W/m2), carbon dioxide flux Fc (mg/(m2s)), the quality of the sensible heat flux identifier QA_Hs, the quality of the latent heat flux identifier QA_LE,Mass identification of co2 flux.The quality of the sensible heat and latent heat, carbon dioxide flux identification is divided into three (quality id 0: (Δ st < 30, the ITC < 30);1: (Δ st < 100, ITC < 100);The rest is 2).The meaning of data time, for example, 0:30 represents the average of 0:00-0:30;The data is stored in *.xls format.

For information of hydrometeorological network or site, please refer to Li et al. (2013), and for data processing, please refer to Liu et al. (2011).


File naming and required software

eddy_covariance_system_Yakou2015
eddy_covariance_system_Yakou2016
eddy_covariance_system_Yakou2017


Data Citations Data citation guideline What's data citation?
Cite as:

Che, T., Liu, S., Li, X., Xu, Z., Zhang, Y., Tan, J. (2019). Observation of water and heat flux in alpine meadow ecosystem-eddy covariance system of Yakou station (2015-2017). A Big Earth Data Platform for Three Poles, DOI: 10.11888/Meteoro.tpdc.270399. CSTR: 18406.11.Meteoro.tpdc.270399. (Download the reference: RIS | Bibtex )

Related Literatures:

1. Che, T., Li, X., Liu, S., Li, H., Xu, Z., Tan, J., Zhang, Y., Ren, Z., Xiao, L., Deng, J., Jin, R., Ma, M., Wang, J., & Yang, X. (2019). Integrated hydrometeorological, snow and frozen-ground observations in the alpine region of the Heihe River Basin, China. Earth System Science Data, 11, 1483-1499( View Details | Download | Bibtex)

2. Liu, S., Li, X., Xu, Z., Che, T., Xiao, Q., Ma, M., Liu, Q., Jin, R., Guo, J., Wang, L., Wang, W., Qi, Y., Li, H., Xu, T., Ran, Y., Hu, X., Shi, S., Zhu, Z., Tan, J., Zhang, Y., Ren, Z. (2018). The Heihe Integrated Observatory Network: A basin‐scale land surface processes observatory in China. Vadose Zone Journal, 17,180072. https://doi.org/10.2136/vzj2018.04.0072.( View Details | Bibtex)

3. Liu, S.M., Xu, Z.W., Wang, W.Z., Bai, J., Jia, Z., Zhu, M., & Wang, J.M. (2011). A comparison of eddy-covariance and large aperture scintillometer measurements with respect to the energy balance closure problem. Hydrology and Earth System Sciences, 15(4), 1291-1306.( View Details | Download | Bibtex)

Using this data, the data citation is required to be referenced and the related literatures are suggested to be cited.


References literature

1.Liu, S.M., Xu, Z.W., Song, L.S., Zhao, Q.Y., Ge, Y., Xu, T.R., Ma, Y.F., Zhu, Z.L., Jia, Z.Z., &Zhang, F. (2016). Upscaling evapotranspiration measurements from multi-site to the satellite pixel scale over heterogeneous land surfaces. Agricultural and Forest Meteorology, 230-231, 97-113. (View Details | Download )

2.Xu, Z.W., Ma, Y.F., Liu, S.M., Shi, S.J., &Wang, J.M. (2017). Assessment of the energy balance closure under advective conditions and its impact using remote sensing data. Journal of Applied Meteorology and Climatology, 56, 127-140. (View Details | Download )

3.Li X, Cheng GD, Liu SM, Xiao Q, Ma MG, Jin R, Che T, Liu QH, Wang WZ, Qi Y, Wen JG, Li HY, Zhu GF, Guo JW, Ran YH, Wang SG, Zhu ZL, Zhou J, Hu XL, Xu ZW. Heihe Watershed Allied Telemetry Experimental Research (HiWATER): Scientific objectives and experimental design. Bulletin of the American Meteorological Society, 2013, 94(8): 1145-1160, 10.1175/BAMS-D-12-00154.1. (View Details )

4.Song, L.S., Liu, S.M., Kustas, W.P., Zhou, J., Xu, Z.W., Xia, T., & Li, M.S. (2016). Application of remote sensing-based two-source energy balance model for mapping field surface fluxes with composite and component surface temperatures. Agricultural and Forest Meteorology, 230-231, 8-19. (View Details | Download )

5.Song, L.S., Kustas WP, Liu, S.M., Colaizzi PD, Nieto H, Xu, Z.W., Ma, Y.F., Li, M.S., Xu, T.R., Agam, N., Tolk, J., & Evett, S. (2016). Applications of a thermal-based two-source energy balance model using Priestley-Taylor approach for surface temperature partitioning under advective conditions. Journal of Hydrology, doi:10.1016/j.jhydrol.2016.06.034. (View Details )

6.Zhang, Q., Sun, R., Jiang, G.Q., Xu, Z.W., & Liu, S.M. (2016). Carbon and energy flux from a Phragmites australis wetland in Zhangye oasis-desert area, China. Agricultural and Forest Meteorology, 230-231, 45-57. (View Details )

7.Xu, T.R., Bateni, S.M., & Liang, S.L. (2015). Estimating turbulent heat fluxes with a weak-constraint data assimilation scheme: A case study (HiWATER-MUSOEXE). IEEE Geoscience and Remote Sensing Letters, 12(1), 68-72. (View Details )

8.Wang, J.M., Zhuang, J.X., Wang, W.Z., Liu, S.M., &Xu, Z.W. (2015). Assessment of uncertainties in eddy covariance flux measurement based on intensive flux matrix of HiWATER-MUSOEXE. IEEE Geoscience and Remote Sensing Letters, 12(2), 259-263. (View Details )

9.Song, L.S., Liu, S.M., Zhang, X., Zhou, J., & Li, M.S. (2015). Estimating and Validating Soil Evaporation and Crop Transpiration During the HiWATER-MUSOEXE. IEEE Geoscience and Remote Sensing Letters, 12(2), 334-338. (View Details | Download )

10.Su, P.X., Yan, Q.D., Xie, T.T., Zhou,Z.J., & Gao, S. (2012). Associated growth of C3 and C4 desert plants helps the C3 species at the cost of the C4 species. Acta Physiologiae Plantarum, 34(6), 2057-2068. (View Details )

11.Wang, Binbin, Ma, Yaoming, Chen, Xuelong, Ma, Weiqiang, Su, Zhongbo, Menenti, Massimo. Observation and simulation of lake-air heat and water transfer processes in a high-altitude shallow lake on the Tibetan Plateau. Journal of Geophysical Research: Atmospheres, 2015, 120(24):2015JD023863. doi:10.1002/2015JD023863 (View Details )

12.Ge, Y., Liang, Y.Z., Wang, J.H., Zhao, Q.Y., &Liu, S.M. (2015). Upscaling sensible heat fluxes with area-to-area regression kriging. IEEE Geoscience and Remote Sensing Letters, 12(3), 656-660. (View Details )

13.Ma, Y.F., Liu, S.M., Zhang, F., Zhou, J., & Jia, Z.Z. (2015). Estimations of regional surface energy fluxes over heterogeneous oasis-desert surfaces in the middle reaches of the Heihe River during HiWATER-MUSOEXE. IEEE Geoscience and Remote Sensing Letters, 12(3), 671-675. doi:10.1109/LGRS.2014.2356652. (View Details )

14.Bai, J., Jia, L., Liu, S., Xu, Z., Hu, G., Zhu, M., &Song, L. (2015). Characterizing the Footprint of Eddy Covariance System and Large Aperture Scintillometer Measurements to Validate Satellite-Based Surface Fluxes. IEEE Geoscience and Remote Sensing Letters, 12(5), 943-947. (View Details | Download )

15.Xu, T.R., Liu, S.M., Xu, Z.W., Liang, S.L., &Xu, L. (2015). A dual-pass data assimilation scheme for estimating surface fluxes with FY3A-VIRR land surface temperature. Science China Earth Science, 58(2), 211-230. (View Details | Download )

16.Xu, T., Liu, S., Xu, L., Chen ,Y., Jia, Z., Xu, Z., &Nielson, J. (2015). Temporal Upscaling and Reconstruction of Thermal Remotely Sensed Instantaneous Evapotranspiration. Remote Sensing, 7(3), 3400-3425. (View Details | Download )

17.Zhang, L., Sun, R., Xu, Z.W., Qiao, C., &Jiang, G.Q. (2015). Diurnal and Seasonal Variations in Carbon Dioxide Exchange in Ecosystems in the Zhangye Oasis Area, Northwest China. PLOS ONE, 10(6). (View Details )

18.Song, L.S., Liu, S.M., William Kustas, P., Zhou, J., &Ma, Y.F. (2015). Using the Surface Temperature-Albedo Space to Separate Regional Soil and Vegetation Temperatures from ASTER Data. Remote Sensing, 7(5), 5828-5848. (View Details | Download )

19.Hu, M.G., Wang, J.H., Ge, Y., Liu, M.X., Liu, S.M., Xu, Z.W., &Xu, T.R. (2015). Scaling Flux Tower Observations of Sensible Heat Flux Using Weighted Area-to-Area Regression Kriging. Atmosphere, 6(8), 1032-1044. (View Details | Download )

20.Zhou, J., Li, M.S., Liu, S.M., Jia, Z.Z., &Ma, Y.F. (2015). Validation and performance evaluations of methods for estimating land surface temperatures from ASTER data in the middle reach of the Heihe River Basin, Northwest China. Remote Sensing, 7, 7126-7156. (View Details )

21.Gao, S.G., Zhu, Z.L., Liu, S.M., Jin, R., Yang, G.C., Tan, L. (2014). Estimating spatial distribution of soil moisture based on Bayesian maximum entropy method with auxiliary data from remote sensing. International Journal of Applied Earth Observation and Geoinformation, 32, 54-66. doi:10.1016/j.jag.2014.03.003. (View Details )

22.Li, Y., Sun, R., &Liu, S.M. (2015). Vegetation Physiological Parameters Setting in the Simple Biosphere Model 2 (SiB2) for alpine meadows in upper reaches of Heihe River. Science China Earth Sciences, 58(5), 755-769. (View Details | Download )

23.Xu, Z.W., Liu, S.M., Li, X., Shi, S.J., Wang, J.M., Zhu, Z.L., Xu, T.R., Wang, W.Z., &Ma, M.G. (2013). Intercomparison of surface energy flux measurement systems used during the HiWATER-MUSOEXE. Journal of Geophysical Research, 118, 13140-13157. (View Details | Download )

24.Liu, S.M., Xu, Z.W., Zhu, Z.L., Jia, Z.Z., &Zhu, M.J. (2013). Measurements of evapotranspiration from eddy-covariance systems and large aperture scintillometers in the Hai River Basin, China. Journal of Hydrology, 487, 24-38. (View Details )


Support Program

Pan-Third Pole Environment Study for a Green Silk Road-A CAS Strategic Priority A Program (No:XDA20000000)

Copyright & License

To respect the intellectual property rights, protect the rights of data authors, expand services of the data center, and evaluate the application potential of data, data users should clearly indicate the source of the data and the author of the data in the research results generated by using the data (including published papers, articles, data products, and unpublished research reports, data products and other results). For re-posting (second or multiple releases) data, the author must also indicate the source of the original data.


License: This work is licensed under an Attribution 4.0 International (CC BY 4.0)


Related Resources
Comments

Current page automatically show English comments Show comments in all languages

Download Follow
Keywords
Geographic coverage
East: 100.24 West: 100.24
South: 38.01 North: 38.01
Details
  • Temporal resolution: Yearly
  • File size: 6 MB
  • Views: 4819
  • Downloads: 139
  • Access: Requestable
  • Temporal coverage: 2015-01-11 To 2018-01-10
  • Updated time: 2021-04-19
Contacts
: CHE Tao   LIU Shaomin   LI Xin   XU Ziwei   ZHANG Yang   TAN Junlei  

Distributor: A Big Earth Data Platform for Three Poles

Email: poles@itpcas.ac.cn

Export metadata